Verifying Six Trigonometric Identities

math-a-phobic

New member
Joined
Feb 10, 2006
Messages
24
Hi! I was trying to verify some identities and got stuck. Please help! I'm really confused. The only problem I actually finished was problem 6, but I'm not positive its right. The work I did can be seen below.


Problem 1:
19831789.jpg



Problem 2:
00eb1d82.jpg



Problem 3:
6d7f930e.jpg



Problem 4:
f96bd5cd.jpg



Problem 5:
6924358b.jpg



Problem 6:
2aec8572.jpg




Thanks for the help! :) I really appreciate it. Sorry this is such a long topic.
 
Try subbing some known identities instead of x and y.

For example, #1, tan2(x)=sec2(x)1\displaystyle tan^{2}(x)=sec^{2}(x)-1
 
Re: Verifying Identities

Hello, math-a-phobic!

These are pretty straight-forward.
They use the standard identities:
    sin2θ+cos2θ=1\displaystyle \;\;\sin^2\theta\,+\,\cos^2\theta\:=\:1
    sec2θ=tan2θ+1\displaystyle \;\;\sec^2\theta\:=\:\tan^2\theta\,+\,1
    csc2θ=cot2θ+1\displaystyle \;\;\csc^2\theta\:=\:\cot^2\theta\,+\,1
Only #6 requires a certain "trick".

1)  4tan4x+tan2x3  =  sec2x(4tan2x3)\displaystyle 1)\;4\tan^4x\,+\,\tan^2x\,-\,3\;=\;\sec^2x(4\tan^2x\,-\,3)
Factor the left side: (tan2x+1)(4tan2x3)\displaystyle \,(\underbrace{\tan^2x\,+\,1})(4\tan^2x\,-\,3)

. . . . . And we have:       sec2x(4tan2x3)\displaystyle \;\;\;\sec^2x(4\tan^2x\,-\,3)


2)  csc4x2csc2x+1  =  cot4x\displaystyle 2)\;\csc^4x\,-\,2\csc^2x\,+\,1\;=\;\cot^4x
Factor the left side: (csc2x1)2\displaystyle \,(\csc^2x\,-\,1)^2

. . . . And we have:       (cot2x)2=cot4x\displaystyle \;\;\;(\cot^2x)^2\:=\:\cot^4x


3)  sinx(12cos2x+cos4x)  =  sin5x\displaystyle 3)\;\sin x(1\,-\,2\cos^2x\,+\,\cos^4x)\;=\;\sin^5x
Factor the left side: sinx(1cos2x)2\displaystyle \,\sin x(\underbrace{1\,-\,\cos^2x})^2

. . . . And we have:       sinx(sin2x)2  =  sinx(sin4x)  =  sin5x\displaystyle \;\;\;\sin x(\sin^2x)^2 \;= \;\sin x(\sin^4x) \;= \; \sin^5x


4)  sec4θtan4θ  =  1+2tan2θ\displaystyle 4)\;\sec^4\theta\,-\,\tan^4\theta \;= \;1\,+\,2\tan^2\theta
Factor the left side: (sec2θtan2θ)(sec2+tan2θ)\displaystyle \,(\underbrace{\sec^2\theta\,-\,\tan^2\theta})(\sec^2\,+\,\tan^2\theta)

. . . . And we have:                 1[(1+tan2θ)+tan2θ)  =  1+2tan2θ\displaystyle \;\;\;\;\;\;\;\;1\,\cdot\,[(\overbrace{1\,+\,\tan^2\theta})\,+\,\tan^2\theta) \;= \;1\,+\,2\tan^2\theta


5)  csc4θcot4θ  =  2csc2θ1\displaystyle 5)\;\csc^4\theta\,-\,\cot^4\theta\;=\;2\csc^2\theta\,-\,1
Factor the left side: (csc2θcot2θ)(csc2+cot2θ)\displaystyle \,(\underbrace{\csc^2\theta - \cot^2\theta})(\csc^2\,+\,\cot^2\theta)

. . . . And we have:               1[csc2θ+(csc2θ1)]  =  2csc2θ1\displaystyle \;\;\;\;\;\;\;1\,\cdot\,[\csc^2\theta\,+\,(\overbrace{\csc^2\theta\,-\,1})] \;= \;2\csc^2\theta\,-\,1


\(\displaystyle 6)\L\;\frac{\sin\beta}{1\,-\,\cos\beta} \;= \; \frac{1\,+\,\cos\beta}{\sin\beta}\)
On the left side, multiply top and bottom by (1+cosβ):\displaystyle (1\,+\,\cos\beta):

\(\displaystyle \L\;\frac{\sin\beta}{1\,-\,\cos\beta}\,\cdot\,\frac{1\,+\,\cos\beta}{1\,+\,\cos\beta}\;=\;\frac{\sin\beta(1\,+\,\cos\beta)}{1\,-\,\cos^2\beta} \;= \;\frac{\sin\beta(1\,+\,\cos\beta)}{\sin^2\beta} \;= \;\frac{1\,+\,\cos\beta}{\sin\beta}\)
 
Top