Re: Verifying Identities
Hello, math-a-phobic!
These are pretty straight-forward.
They use the standard identities:
sin 2 θ + cos 2 θ = 1 \displaystyle \;\;\sin^2\theta\,+\,\cos^2\theta\:=\:1 sin 2 θ + cos 2 θ = 1
sec 2 θ = tan 2 θ + 1 \displaystyle \;\;\sec^2\theta\:=\:\tan^2\theta\,+\,1 sec 2 θ = tan 2 θ + 1
csc 2 θ = cot 2 θ + 1 \displaystyle \;\;\csc^2\theta\:=\:\cot^2\theta\,+\,1 csc 2 θ = cot 2 θ + 1
Only #6 requires a certain "trick".
1 ) 4 tan 4 x + tan 2 x − 3 = sec 2 x ( 4 tan 2 x − 3 ) \displaystyle 1)\;4\tan^4x\,+\,\tan^2x\,-\,3\;=\;\sec^2x(4\tan^2x\,-\,3) 1 ) 4 tan 4 x + tan 2 x − 3 = sec 2 x ( 4 tan 2 x − 3 )
Factor the left side:
( tan 2 x + 1 ⏟ ) ( 4 tan 2 x − 3 ) \displaystyle \,(\underbrace{\tan^2x\,+\,1})(4\tan^2x\,-\,3) ( tan 2 x + 1 ) ( 4 tan 2 x − 3 )
. . . . . And we have:
sec 2 x ( 4 tan 2 x − 3 ) \displaystyle \;\;\;\sec^2x(4\tan^2x\,-\,3) sec 2 x ( 4 tan 2 x − 3 )
2 ) csc 4 x − 2 csc 2 x + 1 = cot 4 x \displaystyle 2)\;\csc^4x\,-\,2\csc^2x\,+\,1\;=\;\cot^4x 2 ) csc 4 x − 2 csc 2 x + 1 = cot 4 x
Factor the left side:
( csc 2 x − 1 ) 2 \displaystyle \,(\csc^2x\,-\,1)^2 ( csc 2 x − 1 ) 2
. . . . And we have:
( cot 2 x ) 2 = cot 4 x \displaystyle \;\;\;(\cot^2x)^2\:=\:\cot^4x ( cot 2 x ) 2 = cot 4 x
3 ) sin x ( 1 − 2 cos 2 x + cos 4 x ) = sin 5 x \displaystyle 3)\;\sin x(1\,-\,2\cos^2x\,+\,\cos^4x)\;=\;\sin^5x 3 ) sin x ( 1 − 2 cos 2 x + cos 4 x ) = sin 5 x
Factor the left side:
sin x ( 1 − cos 2 x ⏟ ) 2 \displaystyle \,\sin x(\underbrace{1\,-\,\cos^2x})^2 sin x ( 1 − cos 2 x ) 2
. . . . And we have:
sin x ( sin 2 x ) 2 = sin x ( sin 4 x ) = sin 5 x \displaystyle \;\;\;\sin x(\sin^2x)^2 \;= \;\sin x(\sin^4x) \;= \; \sin^5x sin x ( sin 2 x ) 2 = sin x ( sin 4 x ) = sin 5 x
4 ) sec 4 θ − tan 4 θ = 1 + 2 tan 2 θ \displaystyle 4)\;\sec^4\theta\,-\,\tan^4\theta \;= \;1\,+\,2\tan^2\theta 4 ) sec 4 θ − tan 4 θ = 1 + 2 tan 2 θ
Factor the left side:
( sec 2 θ − tan 2 θ ⏟ ) ( sec 2 + tan 2 θ ) \displaystyle \,(\underbrace{\sec^2\theta\,-\,\tan^2\theta})(\sec^2\,+\,\tan^2\theta) ( sec 2 θ − tan 2 θ ) ( sec 2 + tan 2 θ )
. . . . And we have:
1 ⋅ [ ( 1 + tan 2 θ ⏞ ) + tan 2 θ ) = 1 + 2 tan 2 θ \displaystyle \;\;\;\;\;\;\;\;1\,\cdot\,[(\overbrace{1\,+\,\tan^2\theta})\,+\,\tan^2\theta) \;= \;1\,+\,2\tan^2\theta 1 ⋅ [ ( 1 + tan 2 θ ) + tan 2 θ ) = 1 + 2 tan 2 θ
5 ) csc 4 θ − cot 4 θ = 2 csc 2 θ − 1 \displaystyle 5)\;\csc^4\theta\,-\,\cot^4\theta\;=\;2\csc^2\theta\,-\,1 5 ) csc 4 θ − cot 4 θ = 2 csc 2 θ − 1
Factor the left side:
( csc 2 θ − cot 2 θ ⏟ ) ( csc 2 + cot 2 θ ) \displaystyle \,(\underbrace{\csc^2\theta - \cot^2\theta})(\csc^2\,+\,\cot^2\theta) ( csc 2 θ − cot 2 θ ) ( csc 2 + cot 2 θ )
. . . . And we have:
1 ⋅ [ csc 2 θ + ( csc 2 θ − 1 ⏞ ) ] = 2 csc 2 θ − 1 \displaystyle \;\;\;\;\;\;\;1\,\cdot\,[\csc^2\theta\,+\,(\overbrace{\csc^2\theta\,-\,1})] \;= \;2\csc^2\theta\,-\,1 1 ⋅ [ csc 2 θ + ( csc 2 θ − 1 ) ] = 2 csc 2 θ − 1
\(\displaystyle 6)\L\;\frac{\sin\beta}{1\,-\,\cos\beta} \;= \; \frac{1\,+\,\cos\beta}{\sin\beta}\)
On the left side, multiply top and bottom by
( 1 + cos β ) : \displaystyle (1\,+\,\cos\beta): ( 1 + cos β ) :
\(\displaystyle \L\;\frac{\sin\beta}{1\,-\,\cos\beta}\,\cdot\,\frac{1\,+\,\cos\beta}{1\,+\,\cos\beta}\;=\;\frac{\sin\beta(1\,+\,\cos\beta)}{1\,-\,\cos^2\beta} \;= \;\frac{\sin\beta(1\,+\,\cos\beta)}{\sin^2\beta} \;= \;\frac{1\,+\,\cos\beta}{\sin\beta}\)