Re: Verifying Identities
Hello, math-a-phobic!
These are pretty straight-forward.
They use the standard identities:
\(\displaystyle \;\;\sin^2\theta\,+\,\cos^2\theta\:=\:1\)
\(\displaystyle \;\;\sec^2\theta\:=\:\tan^2\theta\,+\,1\)
\(\displaystyle \;\;\csc^2\theta\:=\:\cot^2\theta\,+\,1\)
Only #6 requires a certain "trick".
\(\displaystyle 1)\;4\tan^4x\,+\,\tan^2x\,-\,3\;=\;\sec^2x(4\tan^2x\,-\,3)\)
Factor the left side: \(\displaystyle \,(\underbrace{\tan^2x\,+\,1})(4\tan^2x\,-\,3)\)
. . . . . And we have: \(\displaystyle \;\;\;\sec^2x(4\tan^2x\,-\,3)\)
\(\displaystyle 2)\;\csc^4x\,-\,2\csc^2x\,+\,1\;=\;\cot^4x\)
Factor the left side: \(\displaystyle \,(\csc^2x\,-\,1)^2\)
. . . . And we have: \(\displaystyle \;\;\;(\cot^2x)^2\:=\:\cot^4x\)
\(\displaystyle 3)\;\sin x(1\,-\,2\cos^2x\,+\,\cos^4x)\;=\;\sin^5x\)
Factor the left side: \(\displaystyle \,\sin x(\underbrace{1\,-\,\cos^2x})^2\)
. . . . And we have: \(\displaystyle \;\;\;\sin x(\sin^2x)^2 \;= \;\sin x(\sin^4x) \;= \; \sin^5x\)
\(\displaystyle 4)\;\sec^4\theta\,-\,\tan^4\theta \;= \;1\,+\,2\tan^2\theta\)
Factor the left side: \(\displaystyle \,(\underbrace{\sec^2\theta\,-\,\tan^2\theta})(\sec^2\,+\,\tan^2\theta)\)
. . . . And we have: \(\displaystyle \;\;\;\;\;\;\;\;1\,\cdot\,[(\overbrace{1\,+\,\tan^2\theta})\,+\,\tan^2\theta) \;= \;1\,+\,2\tan^2\theta\)
\(\displaystyle 5)\;\csc^4\theta\,-\,\cot^4\theta\;=\;2\csc^2\theta\,-\,1\)
Factor the left side: \(\displaystyle \,(\underbrace{\csc^2\theta - \cot^2\theta})(\csc^2\,+\,\cot^2\theta)\)
. . . . And we have: \(\displaystyle \;\;\;\;\;\;\;1\,\cdot\,[\csc^2\theta\,+\,(\overbrace{\csc^2\theta\,-\,1})] \;= \;2\csc^2\theta\,-\,1\)
\(\displaystyle 6)\L\;\frac{\sin\beta}{1\,-\,\cos\beta} \;= \; \frac{1\,+\,\cos\beta}{\sin\beta}\)
On the left side, multiply top and bottom by \(\displaystyle (1\,+\,\cos\beta):\)
\(\displaystyle \L\;\frac{\sin\beta}{1\,-\,\cos\beta}\,\cdot\,\frac{1\,+\,\cos\beta}{1\,+\,\cos\beta}\;=\;\frac{\sin\beta(1\,+\,\cos\beta)}{1\,-\,\cos^2\beta} \;= \;\frac{\sin\beta(1\,+\,\cos\beta)}{\sin^2\beta} \;= \;\frac{1\,+\,\cos\beta}{\sin\beta}\)