Using a double sum for this is like using a nuke to crack a walnut but what the heck.
[math](1 - 3x)(1 + 3x)^6 = \sum_{j = 0}^1 \binom{1}{j} (1)^j (-3x)^{1-j} \sum_{k = 0}^6 \binom{6}{k} (1)^k (3x)^{6 - k}[/math]
[math]= \sum_{j = 0}^1 \sum_{k = 0}^6 \binom{1}{j} \binom{6}{k} (-3x)^{1-j} (3x)^{6 - k}[/math]
[math]= \sum_{j = 0}^1 \sum_{k = 0}^6 \binom{1}{j} \binom{6}{k} (-1)^{1 - j} 3^{7 -j - k} x^{7 - j - k}[/math]
For the [imath]x^3[/imath] term, pick out j, k such that 7 - j - k = 3. Well, j only goes from 0 to 1, so when j = 0, k = 4 and when j= 1 then k = 3. So the coefficient of [imath]x^3[/imath] will be
[imath]\binom{1}{0} \binom{6}{4} (-1)^{1 - 0} 3^{7 -0 - 4} + \binom{1}{1} \binom{6}{3} (-1)^{1 - 1} 3^{7 -1 - 3}[/imath]
But it's simpler just to distribute:
[math](1 - 3x)(1 + 3x)^6 = \sum_{k = 0}^6 \binom{6}{k} (1)^k (3x)^{6 - k} + \sum_{k = 0}^6 \binom{6}{k} (1)^k (-3x) (3x)^{6 - k}[/math]
and go from there.
-Dan