Use the Ratio Test to determine whether sum{n=1, infinity} [ (-1/n)^(2n) ] converges or diverges

armn91

New member
Joined
Mar 31, 2023
Messages
23
Hello all,
Could anybody let me know if what I have been doing in this activity is correct?
Thank you!
 

Attachments

  • jpg2pdf(3).pdf
    6.3 MB · Views: 5
The caluclation in last step was wrong.

limn1(1+1n)2n(n+1)2=limn1(n+1)2limn(1+1n)2n\displaystyle \lim_{n\rightarrow \infty}\left|\frac{1}{(1+\frac{1}{n})^{2n}(n + 1)^{2}}\right| = \left|\frac{\lim_{n\rightarrow \infty}\frac{1}{(n + 1)^{2}}}{\lim_{n\rightarrow \infty}(1+\frac{1}{n})^{2n}}\right| \neq \infty

Here was your mistake:

limn(1+1n)2n0\displaystyle \lim_{n\rightarrow \infty}(1+\frac{1}{n})^{2n} \neq 0
 
Thank you for the indications. Could you please let me know if this is correct now?
 

Attachments

  • PXL_20230504_020215297.MP.jpg
    PXL_20230504_020215297.MP.jpg
    7.2 MB · Views: 2
The final answer is correct but the calculations are wrong.

limn(nn+1)2n1\displaystyle \lim_{n\rightarrow \infty}\left(\frac{n}{n+1}\right)^{2n} \neq 1
 
y=(nn+1)2nlny=2nln(nn+1)limnlny=limn2nln(nn+1)limnlny=2limnln(nn+1)1ny = \left(\frac{n}{n+1}\right)^{2n}\\ \ln y =2n \ln \left(\frac{n}{n+1}\right)\\ \lim_{n \to \infty} \ln y = \lim_{n \to \infty} 2n \ln \left(\frac{n}{n+1}\right)\\ \lim_{n \to \infty} \ln y = 2 \lim_{n \to \infty} \dfrac{ \ln \left(\frac{n}{n+1}\right)}{\dfrac{1}{n}}\\
Proceed with L'Hopital and undo the log.
 
note (nn+1)2n=(n+1n)2n\left(\dfrac{n}{n+1}\right)^{2n} = \left(\dfrac{n+1}{n}\right)^{-2n}

limn(n+1n)2n\displaystyle \lim_{n \to \infty} \left(\dfrac{n+1}{n}\right)^{-2n}

limn[(1+1n)n]2\displaystyle {\color{red}\lim_{n \to \infty}} \bigg[{\color{red}\left(1 + \dfrac{1}{n}\right)^{n}}\bigg]^{-2}

are you familiar with that basic limit ?
 
Top