Are you thinking about the entirety of universal data (including all data which has not yet been realized or created by humans)?
No, I can't be because there could be a new realization about the universe that could contradict my model.
Are you thinking about the entirety of universal data (including all data which has not yet been realized or created by humans)?
Twelve (or 144) possibilities of what?
Yup. My concern is that you're leaning toward some mathematical explanation to explain large groups of many combined things (some disparate) at once.… there could be a new realization about the universe that [would] contradict my model.
All possible outcomes of any situation. This is a very broad concept (idea).… I want to be able to get my ideas into numerical values, not words.
Yup. My concern is that you're leaning toward some mathematical explanation to explain large groups of many combined things (some disparate) at once.
On the other hand, if you're playing around hoping to delve deeper into infinity, seeking even a truer or more-encompassing definition (a grand theorem, to be sure), be very careful. You know what happened to Georg Cantor!
Of course, I'm not being entirely serious here; I don't know what your big idea is, yet.
All possible outcomes of any situation. This is a very broad concept (idea).
People can certainly assign numbers to attributes of individual, quantifiable things (and, subsequently show eloquent relationships or even derive stupendous results), but putting broad ideas into numbers up front will certainly become a tough order to fill, quickly.
It's better to break a big idea into smaller pieces, and, once you've defined and understand the pieces, start focusing on patterns and interrelationships. Build up an explanation toward the big idea in the back of your mind.
I think this approach will also greatly help people to understand you. Spoon-feed us your ideas; start with little mushy bits, not a 16-course Imperial meal! We can't digest the volume of it all at once.
Have you seen the documentary on Andrew Wiles' process solving Fermat's Last Theorem? He communicated with people about his big idea in bits and pieces. Likely, because most of them could understand what he was talking about (i.e., smaller pieces), yet would not be able to accept the entirety of what Wiles envisioned.
Note also! Being a professor, he at one point tried out some of the smaller bits of his big idea on an unsuspecting group of students taking a course that Wiles intentionally offered without providing a clear curriculum. He was simply trying to glean their thoughts, in a vague manner, for insight to help him get around the roadblocks preventing progress. As the term neared its end, every last student had dropped out. This is what can happen, when an audience does not get clear communication of what the discussion is all about. :cool:
The evidence of quantum mechanics is that chance is part of the fabric of reality. On the other hand, there is very little evidence that the macroscopic world is not fully deterministic. The mathematician Poincare was a determinist who incorporated probability by saying it is necessitated by our ignorance.Consider that there are multiple possibilities that could occur, but reality is something with only one occurence for a particular situation. Agree or Disagree?
I don't understand the context.… reality is something with only one occurrence for a particular situation. Agree or Disagree?
The evidence of quantum mechanics is that chance is part of the fabric of reality. On the other hand, there is very little evidence that the macroscopic world is not fully deterministic. The mathematician Poincare was a determinist who incorporated probability by saying it is necessitated by our ignorance.
I think you are talking metaphysics rather than mathematics. I suspect that trying to mix the two fields together is a recipe for little or no progress in either. If we live in a deterministic universe, then there are no multiple possibilities so the first clause of your sentence is wrong. If we live in a non-deterministic universe, then chance is part of reality so the second clause of your sentence is wrong.
Thus, I disagree because the sentence as a whole is wrong no matter whether the universe is deterministic or not.
I don't understand the context.
I looked at each usage of the word 'reality' in this thread. I'm not getting a unified perception.
Then, I started to post about philosophy and metaphysics viewpoints out there (including some quantum theory). For example: there's a viewpoint that an infinite number of universes exist, each one represents a static "instance" of data, together the entirety of universal data is expressed, time is an illusion created by many copies of everyone and everything moving seamlessly from one single, static occurrence to the next -- like flipping through the cards in a Rolodex file -- wherein every possible outcome happens somewhere within the multiverse, yet any one universe represents "one occurrence".
But while typing, I noticed JeffM's latest reply. His post is better than what I was going to say.
If reality is completely deterministic, then multiple possibilities do not exist. If reality is not completely deterministic, then chance is an unavoidable aspect of reality. If reality is a mixture of deterministic and non-deterministic processes, then chance is part of reality. Chance is excluded only if everything is fully deterministic. It really is either yes or no, not sort of. If possibilities exist in any realm whatsoever, then chance is part of reality.In other words, you are saying that if determinism is true, then there are no other possibilities that could occur, but if we live in a non-determinate universe than chance plays a part in what happens..
I don't think it is as cut and dry as "yes, determinism exist" or "no, it doesn't." I think that there are somethings that are deterministic and other things that are non-deterministic.
Based on the article I linked, I think this is a piece to the puzzle. Whatever we are not looking at, appears to be deterministic because those things happen without any kind of keen observation, while what we are looking at (what we expect to happen) does seem to happen in the way we think they are going to.
Going back to my wall post in reply to you, I did say "Then, If we know that there are a finite amount of possibilities that could occur, then we can start to use the method of probability to make our best guess as to what could occur." And What I meant by that is that if you were able to to take all the possibilities that there were and add them up, viewing them as specific things that are quantifiable, then you can put a number on it, and then you can get an average, which is the thing that would actually be happening. This would put me in really neither camp exclusively because I do think some things are going to happen no matter if you are expecting them to happen or not. But given that IF what we are looking at (in other words, what we expect to happen) happens, then we could still be able to use this model (or a different one) to predict things in some sense.
So yes, you could say I am trying to tie together mathematics and metaphysics.
I am not sure if what I am saying makes sense to you or not. I could just be spouting gibberish, even though it doesn't seem to be that way to me.
No. I'm simply saying that I can't determine a context, my friend. :cool:Do you mean the word reality is used in too many different contexts?
Reality is the one outcome of many possibilities
Reality is the mean of possibilities occurred
Things always reduce to the lowest common denominator in reality
Reality: the mean of all possibilities
Not sure how -1/12 (sum of all Natural numbers) is related to reality
+1 represents reality, in my diagram
A place within all possibilities is what reality actually is
If so, I can't see it.This linked information explains why reality = +1
Like déjà vu? ;-)We experience a single reality
If reality is completely deterministic, then multiple possibilities do not exist. If reality is not completely deterministic, then chance is an unavoidable aspect of reality. If reality is a mixture of deterministic and non-deterministic processes, then chance is part of reality. Chance is excluded only if everything is fully deterministic. It really is either yes or no, not sort of. If possibilities exist in any realm whatsoever, then chance is part of reality.
Consider rolling a standard die. Before it is rolled, it can come up 1, 2, 3, 4, 5, or 6. The average value is 3.5, but it is absolutely certain that you will never roll 3.5.
No. I'm simply saying that I can't determine a context, my friend. :cool:
At this point, I need to go through the entire thread and revisit everything (included your linked references and others' input), to try obtain context. I concede that I haven't yet carefully read everything posted, in this thread.
The following quotes are paraphrased.
If so, I can't see it.
Like déjà vu? ;-)
Good. I'll make an effort, to catch up.These all seem like I am saying roughly the same thing.
No. Whatever you are saying seems to be wrong. Are you trying to expandOK, so I think the actual equation I am thinking is this:
(3x[{2x}^2])^2
So what it looks like to me is:
(3X[2x^2])^2
(6x^2)^2
6x^4
Is this right?
No. Whatever you are saying seems to be wrong. Are you trying to expand
\(\displaystyle \{3x(2x^2)\}^2.\)
\(\displaystyle \{3x * (2x)^2\}^2 = (3x * 4x^2)^2 = \{(3 * 4)(x * x^2)\}^2 =\)
\(\displaystyle ((12 * x^3)^2 = 12^2 * (x^3)^2 = 144x^6\)
There's an outer circle, and there's an inner circle. The center of each circle is the same point. Right?… [A] circle represents all possible outcomes (infinity). Within the circle, is another circle. What is within the inner circle represents the mean of all the possibilities (reality). That is the only thing that is within the inner circle.
Please provide at least one concrete example of this. You already stated that you're talking about all possibilities (reality). I need more detail about what you're thinking when you infer that more possibilities can be added to a set that already contains all possibilities.… you can only add possibilities and cannot subtract them.
Here's one example of why I need the clarifications above. It seems that "all possibilities" has already been used to define the area of the inner circle. Now you're saying that each section of the region between the circles is a different possibility. Are you thinking that each region is a possible outcome of the single given situation?Now suppose that the space in between the two circles is to be split up into different sections. Each section is a different possibility.
\(\displaystyle \dfrac{\{3x(2x^2)\}^2}{144} = \dfrac{(6x^3)^2}{144} = \dfrac{36x^6}{144} = \dfrac{x^6}{4}.\)Trying to do this (I think):
\(\displaystyle {[3x(2x^2)]^2}/144.\)
IDK how to put my ideas into numbers yet.
Okay, I've re-read the thread (twice), and revisited your links. I need some clarifications and some concrete examples from your first post, before I can continue my attempts at relating the information in all of the posts.
There's an outer circle, and there's an inner circle. The center of each circle is the same point. Right?
You later told me that the phrase "all possible outcomes" means "all possible outcomes of any given situation". The phrase "any given situation" ('situation' is a singular noun) refers to one and only one situation. I want to confirm that you are not actually thinking "all possible outcomes of all situations" (plural).
Please provide more detail about your parenthetical notation of infinity above. Is it meant only to say that, given a single situation, there are infinite possible outcomes?
When you say that the outer circle represents "all possible outcomes (infinity)", you are talking about the region in between the inner circle and the outer circle. Right? The inner circle is a part of the outer circle, but it seems like you're saying that there's a difference between "all possible outcomes of any given situation" and the "mean of all possibilities". Could it be that you are conflating the words 'outcomes' and 'possibilities'?
Please provide at least one concrete example of this. You already stated that you're talking about all possibilities (reality). I need more detail about what you're thinking when you infer that more possibilities can be added to a set that already contains all possibilities.
Here's one example of why I need the clarifications above. It seems that "all possibilities" has already been used to define the area of the inner circle. Now you're saying that each section of the region between the circles is a different possibility. Are you thinking that each region is a possible outcome of the single given situation?
I'll wait for your reply, before continuing on to the other issues I've encountered. :cool: