surface area - 2

logistic_guy

Full Member
Joined
Apr 17, 2024
Messages
674
Find the surface area of the given surface. The portion of the paraboloid \(\displaystyle z = x^2 + y^2\) below the plane \(\displaystyle z = 4\).
 
Method 3😍


Let \(\displaystyle f(x,y) = z = x^2 + y^2\)

\(\displaystyle \iint\limits_S \ dS = \int\int \sqrt{(f_x)^2 + (f_y)^2 + 1} \ dx \ dy\)

\(\displaystyle = \int_{-2}^{2}\int_{-\sqrt{4 - y^2}}^{\sqrt{4 - y^2}} \sqrt{4x^2 + 4y^2 + 1}\ dx \ dy\)

\(\displaystyle = \int_{0}^{2\pi}\int_{0}^{2} r\sqrt{4r^2 + 1} \ dr \ d\theta \)

\(\displaystyle = \frac{1}{8}\int_{0}^{2\pi}\int_{1}^{17} \sqrt{u} \ du \ d\theta \)

\(\displaystyle = \frac{1}{8}\int_{0}^{2\pi} \frac{2}{3}u^{3/2}\bigg|_{1}^{17}\ d\theta \)

\(\displaystyle = \frac{1}{8} \frac{2}{3}(17^{3/2} - 1)2\pi \)

\(\displaystyle = \frac{(17^{3/2} - 1)\pi}{6} \approx 36.18\)
 
Top