surface area - 2

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,617
Find the surface area of the given surface. The portion of the paraboloid z=x2+y2\displaystyle z = x^2 + y^2 below the plane z=4\displaystyle z = 4.
 
Method 3😍


Let f(x,y)=z=x2+y2\displaystyle f(x,y) = z = x^2 + y^2

S dS=(fx)2+(fy)2+1 dx dy\displaystyle \iint\limits_S \ dS = \int\int \sqrt{(f_x)^2 + (f_y)^2 + 1} \ dx \ dy

=224y24y24x2+4y2+1 dx dy\displaystyle = \int_{-2}^{2}\int_{-\sqrt{4 - y^2}}^{\sqrt{4 - y^2}} \sqrt{4x^2 + 4y^2 + 1}\ dx \ dy

=02π02r4r2+1 dr dθ\displaystyle = \int_{0}^{2\pi}\int_{0}^{2} r\sqrt{4r^2 + 1} \ dr \ d\theta

=1802π117u du dθ\displaystyle = \frac{1}{8}\int_{0}^{2\pi}\int_{1}^{17} \sqrt{u} \ du \ d\theta

=1802π23u3/2117 dθ\displaystyle = \frac{1}{8}\int_{0}^{2\pi} \frac{2}{3}u^{3/2}\bigg|_{1}^{17}\ d\theta

=1823(173/21)2π\displaystyle = \frac{1}{8} \frac{2}{3}(17^{3/2} - 1)2\pi

=(173/21)π636.18\displaystyle = \frac{(17^{3/2} - 1)\pi}{6} \approx 36.18
 
Top