sum of infinite series

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,539
Estimate the sum of each convergent series to within 0.01\displaystyle 0.01.

(a) k=0(1)k+12k!\displaystyle \sum_{k = 0}^{\infty}(-1)^{k+1}\frac{2}{k!}

(b) k=3(1)kk2k\displaystyle \sum_{k=3}^{\infty}(-1)^{k}\frac{k}{2^{k}}
 
Estimate the sum of each convergent series to within 0.01\displaystyle 0.01.

(a) k=0(1)k+12k!\displaystyle \sum_{k = 0}^{\infty}(-1)^{k+1}\frac{2}{k!}

(b) k=3(1)kk2k\displaystyle \sum_{k=3}^{\infty}(-1)^{k}\frac{k}{2^{k}}
show us your effort/s to solve this problem.
 
Theorem.

SSnan+1\displaystyle |S - S_n| \leq a_{n+1}

where SSn\displaystyle |S - S_n| is the absolute error.

For (a)\displaystyle \bold{(a)}, we are given:

SSn0.01\displaystyle |S - S_n| \leq 0.01

Then,

SSnan+1=2(n+1)!\displaystyle |S - S_n| \leq a_{n + 1} = \frac{2}{(n + 1)!}

2(n+1)!0.01\displaystyle \frac{2}{(n + 1)!} \leq 0.01

This gives n4.29487=5\displaystyle n \geq \lceil4.29487\rceil = 5.

So, summing 5\displaystyle 5 terms will guarantee an error no more than 0.01\displaystyle 0.01.

k=0(1)k+12k!=SS5=k=04(1)k+12k!=0.75\displaystyle \sum_{k = 0}^{\infty}(-1)^{k+1}\frac{2}{k!} = S \approx S_5 = \sum_{k = 0}^{4}(-1)^{k+1}\frac{2}{k!} = -0.75

Actual sum:

k=0(1)k+12k!0.74\displaystyle \sum_{k = 0}^{\infty}(-1)^{k+1}\frac{2}{k!} \approx -0.74

Checking the absolute error.

SS5=0.74(0.75)=0.010.01\displaystyle |S - S_5| = |-0.74 - (-0.75)| = 0.01 \leq 0.01✅

For (b)\displaystyle \bold{(b)}:

SSnan+1=n+12n+1\displaystyle |S - S_n| \leq a_{n + 1} = \frac{n + 1}{2^{n + 1}}

n+12n+10.01\displaystyle \frac{n + 1}{2^{n + 1}} \leq 0.01

This gives n8.960002=9\displaystyle n \geq \lceil 8.960002\rceil = 9.

So, summing 9\displaystyle 9 terms will guarantee an error no more than 0.01\displaystyle 0.01.

k=3(1)kk2k=SS9=k=311(1)kk2k0.22\displaystyle \sum_{k = 3}^{\infty}(-1)^{k}\frac{k}{2^k} = S \approx S_9 = \sum_{k = 3}^{11}(-1)^{k}\frac{k}{2^k} \approx -0.22

Actual sum:

k=3(1)kk2k0.22\displaystyle \sum_{k = 3}^{\infty}(-1)^{k}\frac{k}{2^k} \approx -0.22

Checking the absolute error.

SS9=0.22(0.22)=00.01\displaystyle |S - S_9| = |-0.22 - (-0.22)| = 0 \leq 0.01✅
 
Top