Hello, Ryan Rigdon!
There was a typo in my second answer . . . sorry!
The height of the ball is given by: .\(\displaystyle h \:=\:v_ot - 16t^2\)
. . where \(\displaystyle v_o\) is the initial speed of the ball.
The maximum height occurs at the vertex of the parabolic function.
\(\displaystyle \text{The vertex is at: }\:t = \frac{\text{-}b}{2a},\,\text{ where }b = v_o\,\text{ and }\,a = \text{-}16\)
\(\displaystyle \text{Maximum height occurs at: }\:t \:=\:\frac{\text{-}v_o}{2(\text{-}16)} \:=\:\frac{v_o}{32}\text{ seconds.}\)
\(\displaystyle \text{Hence, maximum height is: }\:h \:=\:v_o\left(\frac{v_o}{32}\right) - 16\left(\frac{v_o}{32}\right)^2 \:=\:\frac{v_o^2}{64}\text{ feet. }\;[1]\)
\(\displaystyle \text{Colleen was already 65 feet above the ground.}\)
\(\displaystyle \text{When the ball reaches her }\left(\tfrac{v_o}{32}\text{ seconds later}\right)\!,\text{ she has risen another }5\!\left(\tfrac{v_o}{32}\right)\text{ feet.}\)
\(\displaystyle \text{Hence, Colleen's height is: }\:65 + \frac{v_o}{32}\text{ feet. }\;[2]\)
\(\displaystyle \text{Equate [1] and [2]: }\;\frac{v_o^2}{64} \;=\;65 + \frac{5v_o}{32} \quad\Rightarrow\quad v_o^2 - 10v_o - 4160 \:=\:0\)
\(\displaystyle \text{Quadratic Formua: }\;v_o \;=\;\frac{-(\text{-}10) \pm\sqrt{(\text{-}10)^2 - (4)(1)(\text{-}4160)}}{2} \;=\;\frac{10 \pm\sqrt{16740}}{2} \;=\;5\;\pm\; 3\sqrt{465}\)
\(\displaystyle \text{Therefore: }\:v_o \;=\;69.69157596 \;\approx\;\boxed{69.7\text{ ft/sec.}}\)
There was a typo in my second answer . . . sorry!
A hot-air balloon left the ground rising at 5 ft per second.
13 seconds later, Victoria through a ball straight up to her friend Colleen in the balloon.
At what speed did she throw the ball if it just made it to Colleen?
The height of the ball is given by: .\(\displaystyle h \:=\:v_ot - 16t^2\)
. . where \(\displaystyle v_o\) is the initial speed of the ball.
The maximum height occurs at the vertex of the parabolic function.
\(\displaystyle \text{The vertex is at: }\:t = \frac{\text{-}b}{2a},\,\text{ where }b = v_o\,\text{ and }\,a = \text{-}16\)
\(\displaystyle \text{Maximum height occurs at: }\:t \:=\:\frac{\text{-}v_o}{2(\text{-}16)} \:=\:\frac{v_o}{32}\text{ seconds.}\)
\(\displaystyle \text{Hence, maximum height is: }\:h \:=\:v_o\left(\frac{v_o}{32}\right) - 16\left(\frac{v_o}{32}\right)^2 \:=\:\frac{v_o^2}{64}\text{ feet. }\;[1]\)
\(\displaystyle \text{Colleen was already 65 feet above the ground.}\)
\(\displaystyle \text{When the ball reaches her }\left(\tfrac{v_o}{32}\text{ seconds later}\right)\!,\text{ she has risen another }5\!\left(\tfrac{v_o}{32}\right)\text{ feet.}\)
\(\displaystyle \text{Hence, Colleen's height is: }\:65 + \frac{v_o}{32}\text{ feet. }\;[2]\)
\(\displaystyle \text{Equate [1] and [2]: }\;\frac{v_o^2}{64} \;=\;65 + \frac{5v_o}{32} \quad\Rightarrow\quad v_o^2 - 10v_o - 4160 \:=\:0\)
\(\displaystyle \text{Quadratic Formua: }\;v_o \;=\;\frac{-(\text{-}10) \pm\sqrt{(\text{-}10)^2 - (4)(1)(\text{-}4160)}}{2} \;=\;\frac{10 \pm\sqrt{16740}}{2} \;=\;5\;\pm\; 3\sqrt{465}\)
\(\displaystyle \text{Therefore: }\:v_o \;=\;69.69157596 \;\approx\;\boxed{69.7\text{ ft/sec.}}\)