Solving Logarithm with table.

b. 118.634.9528371964b.~\frac{ 118.6 }{ 34.95 } - \frac{ 2837 }{ 1964 }=118610349510028371964= \frac{ 118 \frac{ 6 }{ 10 } }{ 34 \frac{ 95 }{ 100 } } - \frac{ 2837 }{ 1964 }=118610÷(3495100)28371964= \frac{ 1186 }{ 10 } \div \left( \frac{ 3495 }{ 100 } \right) - \frac{ 2837 }{ 1964 }=118610×100349528371964= \frac{ 1186 }{ \cancel{10} } \times \frac{ \cancel{100} }{ 3495 } - \frac{ 2837 }{ 1964 }=11860349528371964= \frac{ 11860 }{ 3495 } - \frac{ 2837 }{ 1964 }=26755451372836= \frac{ 2675545 }{ 1372836 }
No.Log267554513728366.4274 6.13760.2898antilog of 0.28981.9489\begin{array}{|l|r|} \hline \text{No.} & \text{Log} \\ \hline \frac{ 2675545 }{ 1372836 } & 6 .4274 \\ & - \\ & ~6.1376 \\ \hline & 0.2898 \\ & \overline{\text{antilog of}~ 0.2898} \\ & 1.9489 \end{array}
\therefore118.634.9528371964\frac{ 118.6 }{ 34.95 } - \frac{ 2837 }{ 1964 }=1.9489= 1.9489
 
b. 118.634.9528371964b.~\frac{ 118.6 }{ 34.95 } - \frac{ 2837 }{ 1964 }=118610349510028371964= \frac{ 118 \frac{ 6 }{ 10 } }{ 34 \frac{ 95 }{ 100 } } - \frac{ 2837 }{ 1964 }=118610÷(3495100)28371964= \frac{ 1186 }{ 10 } \div \left( \frac{ 3495 }{ 100 } \right) - \frac{ 2837 }{ 1964 }=118610×100349528371964= \frac{ 1186 }{ \cancel{10} } \times \frac{ \cancel{100} }{ 3495 } - \frac{ 2837 }{ 1964 }=11860349528371964= \frac{ 11860 }{ 3495 } - \frac{ 2837 }{ 1964 }=26755451372836= \frac{ 2675545 }{ 1372836 }
No.Log267554513728366.4274 6.13760.2898antilog of 0.28981.9489\begin{array}{|l|r|} \hline \text{No.} & \text{Log} \\ \hline \frac{ 2675545 }{ 1372836 } & 6 .4274 \\ & - \\ & ~6.1376 \\ \hline & 0.2898 \\ & \overline{\text{antilog of}~ 0.2898} \\ & 1.9489 \end{array}
\therefore118.634.9528371964\frac{ 118.6 }{ 34.95 } - \frac{ 2837 }{ 1964 }=1.9489= 1.9489
Do you have a question associated with this post?
 
c. 2.8743+62.87436c.~\frac{ 2.874 ^ { 3 } + 6 }{ 2.874 ^ { 3 } - 6 }
No.Log2.87433×(0.4585)=1.375560.7782antilog of 1.375523.7411antilog of 0.7782=6.0001\begin{array}{|l|r|} \hline \text{No.} & \text{Log} \\ \hline 2.874^3 & 3×(0.4585) \\ & = 1.3755 \\ \hline 6 & 0.7782 \\ \hline \text{antilog of}~1.3755 & \\ 23.7411 & \\ \hline \text{antilog of}~ 0.7782 & \\ = 6.0001 & \\ \hline \end{array}
2.8743+62.87436\frac{ 2.874 ^ { 3 } + 6 }{ 2.874 ^ { 3 } - 6 }=23.7411+6.000123.74116.0001=\frac{ 23.7411 + 6.0001 }{ 23.7411 - 6.0001 }=29.741117.741=\frac{ 29.7411 }{ 17.741 }
No.Log29.741117.7411.47341.24900.2244antiloglog1.6760.2244\begin{array}{|l|r|} \hline \text{No.} & \text{Log} \\ \hline \\[8pt] \Huge{\frac{ 29.7411 }{ 17.741 }} & 1.4734 \\ & - \\ & 1.2490 \\ \hline & 0.2244 \\ \hline \text{antilog} & \text{log} \\ \hline 1.676 & 0.2244 \\ \hline \end{array}
 29.741117.741\therefore ~ \frac{ 29.7411 }{ 17.741 }=1.676= 1.676
 
c. 2.8743+62.87436c.~\frac{ 2.874 ^ { 3 } + 6 }{ 2.874 ^ { 3 } - 6 }
No.Log2.87433×(0.4585)=1.375560.7782antilog of 1.375523.7411antilog of 0.7782=6.0001\begin{array}{|l|r|} \hline \text{No.} & \text{Log} \\ \hline 2.874^3 & 3×(0.4585) \\ & = 1.3755 \\ \hline 6 & 0.7782 \\ \hline \text{antilog of}~1.3755 & \\ 23.7411 & \\ \hline \text{antilog of}~ 0.7782 & \\ = 6.0001 & \\ \hline \end{array}
2.8743+62.87436\frac{ 2.874 ^ { 3 } + 6 }{ 2.874 ^ { 3 } - 6 }=23.7411+6.000123.74116.0001=\frac{ 23.7411 + 6.0001 }{ 23.7411 - 6.0001 }=29.741117.741=\frac{ 29.7411 }{ 17.741 }
No.Log29.741117.7411.47341.24900.2244antiloglog1.6760.2244\begin{array}{|l|r|} \hline \text{No.} & \text{Log} \\ \hline \\[8pt] \Huge{\frac{ 29.7411 }{ 17.741 }} & 1.4734 \\ & - \\ & 1.2490 \\ \hline & 0.2244 \\ \hline \text{antilog} & \text{log} \\ \hline 1.676 & 0.2244 \\ \hline \end{array}
 29.741117.741\therefore ~ \frac{ 29.7411 }{ 17.741 }=1.676= 1.676
Do you notice that by taking the log of 6, and then its antilog, you have only made the number less accurate??

1665332634168.png

The point of using logarithms isn't to be less accurate; it's to make approximate answers easier when there is no calculator available. (By the way, if you are using a computer, there is a calculator available! And even if I were doing this on paper, I would probably not make such an elaborate table, with all the rewriting of numbers it involves.)

The tiny error, of course, is beyond the four digits of accuracy you have in your work, so it really doesn't make a difference; but surely it's a waste of time to use the table twice to do nothing. Labor-saving devices have to be used with intelligence, not blindly, or they become labor-increasing devices.

But your work is correct.
 
Top