thank Dr. for explaining what you mean
i'll try to use conjugate
\(\displaystyle \frac{1}{\sin x + 1}\frac{\sin x - 1}{\sin x - 1}\)
the denomator have the form fresh_42 give in post \(\displaystyle 10\)
\(\displaystyle \frac{1}{\sin x + 1}\frac{\sin x - 1}{\sin x - 1} = \frac{\sin x - 1}{\sin^2 x - 1^2} = \frac{\sin x - 1}{-\cos^2 x}\)
\(\displaystyle = \frac{1 - \sin x}{\cos^2 x} = \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} = \sec^2 x - \frac{\sin x}{\cos^2 x} \)
\(\displaystyle \int \frac{1}{\sin x + 1} dx = \int \sec^2 x - \frac{\sin x}{\cos^2 x} dx = \tan x - \int \frac{\sin x}{\cos^2 x} dx\)
\(\displaystyle u = \cos x\)
\(\displaystyle du = -\sin x dx\)
\(\displaystyle -\int \frac{\sin x}{\cos^2 x} dx = \int \frac{1}{u^2} du = -\frac{1}{u} + c = -\frac{1}{\cos x} + c = -\sec x + c\)
this mean \(\displaystyle \int \frac{1}{\sin x + 1} dx = \tan x - \sec x + c\)
Another possible solution method is the
Weierstrass or tangent half-angle substitution [imath] t=\tan \dfrac{x}{2} .[/imath] It is a technique to transform trig functions into polynomials that are often easier to integrate. Here we get (if I made no mistake, it's late here) [math] \dfrac{dx}{1+\sin(x)}=\dfrac{\dfrac{2\,dt}{1+t^2}}{1+\dfrac{2t}{1+t^2}}= 2\cdot \dfrac{dt}{(1+t)^2} [/math]Now you can substitute [imath] u=1+t, [/imath] integrate, and re-substitute [imath] u [/imath] and [imath] t. [/imath]
let me try this idea
this mean \(\displaystyle \int \frac{1}{\sin x + 1} dx = \int \dfrac{\dfrac{2}{1+t^2}}{1+\dfrac{2t}{1+t^2}} dt = \int 2\cdot \dfrac{1}{(1+t)^2} dt\)
\(\displaystyle u = 1 + t\)
\(\displaystyle du = dt\)
\(\displaystyle \int 2\cdot \dfrac{1}{(1+t)^2} dt = 2\int \frac{1}{u^2}du = -2\frac{1}{u} + c = -2\frac{1}{1 + t} + c = \frac{-2}{1 + \tan\frac{x}{2}} + c\)
i get two different answers
i check my calculations \(\displaystyle 3\) times
i can't see where my mistake