How does [math]\left[(a+\frac{1}{n})^{2}+(a+\frac{2}{n})^{2}+...+(a+\frac{n}{n})^{2}\right][/math] = [math](n-1)a^{2}+2*a\left(\frac{1}{n}+\frac{2}{n}+...+\frac{n-1}{n}\right)+\frac{1^{2}}{n^{2}}+\frac{2^2}{n^{2}}+...+\frac{(n-1)^{2}}{n^{2}}[/math]?
I tried something but I don't know if this is correct and it's not the same with the upper image!
[math]\frac{(an+1)^{2}}{n^{2}}+\frac{(an+2)^{2}}{n^{2}}+\frac{(an+3)^{2}}{n^{2}}+...+\frac{(an+n-1)^{2}}{n^{2}}+\frac{(an+n)^{2}}{n^{2}}[/math] = [math]\frac{1}{n^{2}}\left((a^{2}n^{2}+2an+1)+(a^{2}n^{2}+4an+4)+(a^{2}n^{2}+6an+9)+...+(a^{2}n^{2}+2an(n-1)+(n-1)^{2}+(a^{2}n^{2}+2an*n+n^{2})\right)[/math]
[math]\frac{(an+1)^{2}}{n^{2}}+\frac{(an+2)^{2}}{n^{2}}+\frac{(an+3)^{2}}{n^{2}}+...+\frac{(an+n-1)^{2}}{n^{2}}+\frac{(an+n)^{2}}{n^{2}}[/math]
[math]\frac{1}{n^{2}}\left((a^{2}n^{2}+2an+1)+(a^{2}n^{2}+4an+4)+(a^{2}n^{2}+6an+9)+...+((a^{2}n^{2}+2an(n-1)+(n-1)^{2})+(a^{2}n^{2}+2an*n+n^{2})\right)[/math]
Is it correct what I wrote??
I tried something but I don't know if this is correct and it's not the same with the upper image!
[math]\frac{(an+1)^{2}}{n^{2}}+\frac{(an+2)^{2}}{n^{2}}+\frac{(an+3)^{2}}{n^{2}}+...+\frac{(an+n-1)^{2}}{n^{2}}+\frac{(an+n)^{2}}{n^{2}}[/math] = [math]\frac{1}{n^{2}}\left((a^{2}n^{2}+2an+1)+(a^{2}n^{2}+4an+4)+(a^{2}n^{2}+6an+9)+...+(a^{2}n^{2}+2an(n-1)+(n-1)^{2}+(a^{2}n^{2}+2an*n+n^{2})\right)[/math]
[math]\frac{(an+1)^{2}}{n^{2}}+\frac{(an+2)^{2}}{n^{2}}+\frac{(an+3)^{2}}{n^{2}}+...+\frac{(an+n-1)^{2}}{n^{2}}+\frac{(an+n)^{2}}{n^{2}}[/math]
[math]\frac{1}{n^{2}}\left((a^{2}n^{2}+2an+1)+(a^{2}n^{2}+4an+4)+(a^{2}n^{2}+6an+9)+...+((a^{2}n^{2}+2an(n-1)+(n-1)^{2})+(a^{2}n^{2}+2an*n+n^{2})\right)[/math]
Is it correct what I wrote??