Series exercise based on raising the exponent to the power of 2!

wolly

Junior Member
Joined
Jul 18, 2018
Messages
87
How does [(a+1n)2+(a+2n)2+...+(a+nn)2]\left[(a+\frac{1}{n})^{2}+(a+\frac{2}{n})^{2}+...+(a+\frac{n}{n})^{2}\right] = (n1)a2+2a(1n+2n+...+n1n)+12n2+22n2+...+(n1)2n2(n-1)a^{2}+2*a\left(\frac{1}{n}+\frac{2}{n}+...+\frac{n-1}{n}\right)+\frac{1^{2}}{n^{2}}+\frac{2^2}{n^{2}}+...+\frac{(n-1)^{2}}{n^{2}}?

I tried something but I don't know if this is correct and it's not the same with the upper image!


(an+1)2n2+(an+2)2n2+(an+3)2n2+...+(an+n1)2n2+(an+n)2n2\frac{(an+1)^{2}}{n^{2}}+\frac{(an+2)^{2}}{n^{2}}+\frac{(an+3)^{2}}{n^{2}}+...+\frac{(an+n-1)^{2}}{n^{2}}+\frac{(an+n)^{2}}{n^{2}} = 1n2((a2n2+2an+1)+(a2n2+4an+4)+(a2n2+6an+9)+...+(a2n2+2an(n1)+(n1)2+(a2n2+2ann+n2))\frac{1}{n^{2}}\left((a^{2}n^{2}+2an+1)+(a^{2}n^{2}+4an+4)+(a^{2}n^{2}+6an+9)+...+(a^{2}n^{2}+2an(n-1)+(n-1)^{2}+(a^{2}n^{2}+2an*n+n^{2})\right)
(an+1)2n2+(an+2)2n2+(an+3)2n2+...+(an+n1)2n2+(an+n)2n2\frac{(an+1)^{2}}{n^{2}}+\frac{(an+2)^{2}}{n^{2}}+\frac{(an+3)^{2}}{n^{2}}+...+\frac{(an+n-1)^{2}}{n^{2}}+\frac{(an+n)^{2}}{n^{2}}

1n2((a2n2+2an+1)+(a2n2+4an+4)+(a2n2+6an+9)+...+((a2n2+2an(n1)+(n1)2)+(a2n2+2ann+n2))\frac{1}{n^{2}}\left((a^{2}n^{2}+2an+1)+(a^{2}n^{2}+4an+4)+(a^{2}n^{2}+6an+9)+...+((a^{2}n^{2}+2an(n-1)+(n-1)^{2})+(a^{2}n^{2}+2an*n+n^{2})\right)
Is it correct what I wrote??
 
How does [(a+1n)2+(a+2n)2+...+(a+nn)2]\left[(a+\frac{1}{n})^{2}+(a+\frac{2}{n})^{2}+...+(a+\frac{n}{n})^{2}\right] = (n1)a2+2a(1n+2n+...+n1n)+12n2+22n2+...+(n1)2n2(n-1)a^{2}+2*a\left(\frac{1}{n}+\frac{2}{n}+...+\frac{n-1}{n}\right)+\frac{1^{2}}{n^{2}}+\frac{2^2}{n^{2}}+...+\frac{(n-1)^{2}}{n^{2}}?

I tried something but I don't know if this is correct and it's not the same with the upper image!


(an+1)2n2+(an+2)2n2+(an+3)2n2+...+(an+n1)2n2+(an+n)2n2\frac{(an+1)^{2}}{n^{2}}+\frac{(an+2)^{2}}{n^{2}}+\frac{(an+3)^{2}}{n^{2}}+...+\frac{(an+n-1)^{2}}{n^{2}}+\frac{(an+n)^{2}}{n^{2}} = 1n2((a2n2+2an+1)+(a2n2+4an+4)+(a2n2+6an+9)+...+(a2n2+2an(n1)+(n1)2+(a2n2+2ann+n2))\frac{1}{n^{2}}\left((a^{2}n^{2}+2an+1)+(a^{2}n^{2}+4an+4)+(a^{2}n^{2}+6an+9)+...+(a^{2}n^{2}+2an(n-1)+(n-1)^{2}+(a^{2}n^{2}+2an*n+n^{2})\right)
(an+1)2n2+(an+2)2n2+(an+3)2n2+...+(an+n1)2n2+(an+n)2n2\frac{(an+1)^{2}}{n^{2}}+\frac{(an+2)^{2}}{n^{2}}+\frac{(an+3)^{2}}{n^{2}}+...+\frac{(an+n-1)^{2}}{n^{2}}+\frac{(an+n)^{2}}{n^{2}}

1n2((a2n2+2an+1)+(a2n2+4an+4)+(a2n2+6an+9)+...+((a2n2+2an(n1)+(n1)2)+(a2n2+2ann+n2))\frac{1}{n^{2}}\left((a^{2}n^{2}+2an+1)+(a^{2}n^{2}+4an+4)+(a^{2}n^{2}+6an+9)+...+((a^{2}n^{2}+2an(n-1)+(n-1)^{2})+(a^{2}n^{2}+2an*n+n^{2})\right)
Is it correct what I wrote??

It looks like the right hand side in the first equality is missing a couple of items (typeset in boldface below):
(n1)a2+2a(1n+2n+...+n1n+nn)+12n2+22n2+...+(n1)2n2+n2n2(n-1)a^{2}+2*a\left(\frac{1}{n}+\frac{2}{n}+...+\frac{n-1}{n} +\mathbf{\frac{n}{n}} \right) +\frac{1^{2}}{n^{2}}+\frac{2^2}{n^{2}}+...+\frac{(n-1)^{2}}{n^{2}} \mathbf{+\frac{n^2}{n^2}}
 
It looks like the right hand side in the first equality is missing a couple of items (typeset in boldface below):
(n1)a2+2a(1n+2n+...+n1n+nn)+12n2+22n2+...+(n1)2n2+n2n2(n-1)a^{2}+2*a\left(\frac{1}{n}+\frac{2}{n}+...+\frac{n-1}{n} +\mathbf{\frac{n}{n}} \right) +\frac{1^{2}}{n^{2}}+\frac{2^2}{n^{2}}+...+\frac{(n-1)^{2}}{n^{2}} \mathbf{+\frac{n^2}{n^2}} ?
And I missed another one: shouldn't it be na2na^2 instead of (n1)a2(n-1)a^2 in the same expression?
 
1n2(n2a2+n2a2+....+n2a2)\frac{1}{n^{2}}*\left(n^{2}*a^{2}+n^{2}*a^{2}+....+n^{2}a^{2}\right)= a2+a2+...+a2a^{2}+a^{2}+...+a^{2} and from here?????
 
Top