Hello, Mooch22!
I'll do the first part now . . .
Let
f \displaystyle f f be the function:
f ′ ( x ) = x ⋅ f ( x ) ) \displaystyle \,f'(x)\:=\:x\cdot\sqrt{f(x))} f ′ ( x ) = x ⋅ f ( x ) ) , where
f ( 3 ) = 25 \displaystyle f(3)\,=\,25 f ( 3 ) = 2 5 .
Find
f ′ ′ ( 3 ) \displaystyle \,f''(3) f ′ ′ ( 3 )
We have: \(\displaystyle \L\,f'(x)\;=\;x\cdot\left(f(x)\right)^{\frac{1}{2}}\)
Differentiate . . . (Product Rule and Chain Rule)
\(\displaystyle \L\;\;f''(x)\;=\;x\cdot\frac{1}{2}\left(f(x)\right)^{-\frac{1}{2}}\cdot f'(x)\,+\,1\cdot\left(f(x)\right)^{\frac{1}{2}}\)
We have: \(\displaystyle \L\,f''(x)\;=\;\frac{x\cdot f'(x)}{2\sqrt{f(x)}}\,+\,\sqrt{f(x)}\)
When
x = 3 \displaystyle x\,=\,3 x = 3 . we have: \(\displaystyle \L\,f''(3)\;=\;\frac{3\cdot f'(3)}{2\sqrt{f(3)}}\,+\,\sqrt{f(3)}\)
\displaystyle \;\; We are given:
f ( 3 ) = 25 \displaystyle \,f(3)\,=\,25 f ( 3 ) = 2 5 . . . hence:
f ( 3 ) = 25 = 5 \displaystyle \,\sqrt{f(3)} \:=\:\sqrt{25}\:=\:5 f ( 3 ) = 2 5 = 5
\displaystyle \;\; Since
f ′ ( x ) = x f ( x ) \displaystyle \,f'(x)\:=\:x\sqrt{f(x)} f ′ ( x ) = x f ( x ) , then:
f ′ ( 3 ) = 3 ⋅ f ( 3 ) = 3 ⋅ 25 = 15 \displaystyle \,f'(3)\:=\:3\cdot\sqrt{f(3)}\:=\:3\cdot\sqrt{25}\:=\:15 f ′ ( 3 ) = 3 ⋅ f ( 3 ) = 3 ⋅ 2 5 = 1 5
Therefore: \(\displaystyle \L\,f''(3)\;=\;\frac{3\cdot15}{2\cdot5}\,+\,5\;=\;\frac{19}{2}\)
.