Hello, Mooch22!
I'll do the first part now . . .
Let \(\displaystyle f\) be the function: \(\displaystyle \,f'(x)\:=\:x\cdot\sqrt{f(x))}\), where \(\displaystyle f(3)\,=\,25\).
Find \(\displaystyle \,f''(3)\)
We have: \(\displaystyle \L\,f'(x)\;=\;x\cdot\left(f(x)\right)^{\frac{1}{2}}\)
Differentiate . . . (Product Rule and Chain Rule)
\(\displaystyle \L\;\;f''(x)\;=\;x\cdot\frac{1}{2}\left(f(x)\right)^{-\frac{1}{2}}\cdot f'(x)\,+\,1\cdot\left(f(x)\right)^{\frac{1}{2}}\)
We have: \(\displaystyle \L\,f''(x)\;=\;\frac{x\cdot f'(x)}{2\sqrt{f(x)}}\,+\,\sqrt{f(x)}\)
When \(\displaystyle x\,=\,3\). we have: \(\displaystyle \L\,f''(3)\;=\;\frac{3\cdot f'(3)}{2\sqrt{f(3)}}\,+\,\sqrt{f(3)}\)
\(\displaystyle \;\;\)We are given: \(\displaystyle \,f(3)\,=\,25\) . . . hence: \(\displaystyle \,\sqrt{f(3)} \:=\:\sqrt{25}\:=\:5\)
\(\displaystyle \;\;\)Since \(\displaystyle \,f'(x)\:=\:x\sqrt{f(x)}\), then: \(\displaystyle \,f'(3)\:=\:3\cdot\sqrt{f(3)}\:=\:3\cdot\sqrt{25}\:=\:15\)
Therefore: \(\displaystyle \L\,f''(3)\;=\;\frac{3\cdot15}{2\cdot5}\,+\,5\;=\;\frac{19}{2}\)
.