mathfun said:
so then it should be:
2(sin(x/2)cos(pi/3) - sin(pi/3)cos(x/2)
=2sin((x/2) - (pi/3))
(x/2) - (pi/3) =
x = (11pi)/6 ??
like that? i understand y we use (3pi)/2...but i don't understnad... y not use -2?
and i never new that for.... sin(alpha - beta) where (alpha - beta) = minimum??
You have established
. . . \(\displaystyle \L y = 2\sin{(\frac{x}{2} - \frac{\pi}{3})}\)
is minimum at \(\displaystyle y = -2\).
So set \(\displaystyle y = -2\) and solve for \(\displaystyle x\):
. . . \(\displaystyle \L 2\sin{(\frac{x}{2} \, - \, \frac{\pi}{3})} = -2\)
. . . \(\displaystyle \L \sin{(\frac{x}{2} \, - \, \frac{\pi}{3})} = -1\)
Some practise (ie. a long and ugly way):
Sine is negative in quadrants 3 and 4:
Code:
pi/2
s | a
|
|
pi -------+-------- 0, 2pi
| /|\ |
\/ | \/
/ | \ c
t |
3pi/2
And \(\displaystyle \L \arcsin{(1)} = \frac{\pi}{2}\)
So, solving for \(\displaystyle \L \frac{x}{2} - \frac{\pi}{3}\) first:
. . . \(\displaystyle \L \begin{align*} \left(\frac{x}{2} \, - \, \frac{\pi}{3}\right) &= \pi \, + \, \frac{\pi}{2} \\
&= \frac{3\pi}{2}\\
\end{align*}\)
. . . (and \(\displaystyle \L \left(\frac{x}{2} - \frac{\pi}{3}\right) = 2\pi - \frac{\pi}{2} = \frac{3\pi}{2}\))
Now solve for \(\displaystyle x\):
. . . \(\displaystyle \L \left(\frac{x}{2} \, - \, \frac{\pi}{3}\right) = \frac{3\pi}{2}\)
. . . \(\displaystyle \L \frac{x}{2} = \frac{3\pi}{2} + \frac{\pi}{3}\)
. . . \(\displaystyle \L \frac{x}{2} = \frac{11\pi}{6}\)
. . . \(\displaystyle \L x = \frac{11\pi}{3}\)
If there were two solutions for \(\displaystyle \left(\frac{x}{2} \, - \, \frac{\pi}{3}\right)\), we solve for \(\displaystyle x\) as above for each solution.