I don't think separation of variables works here. This is a 1D heat equation with [imath]t > 0[/imath], [imath]x \in \mathbb R[/imath], so maybe try using the heat kernel [imath]S(x, t) = \dfrac1{\sqrt{4\pi t}} \exp\left(-\dfrac{x^2}{4t}\right)[/imath]. For such heat equation, the solution is given by [math]v(x, t) = \displaystyle \int_{\mathbb R} S(x - y, t) v(y, 0)\,dy[/math]. Plugging in the heat kernel and the initial conditions gives
[math]v(x, t) = \dfrac1{\sqrt{4\pi t}}\displaystyle \int_{\mathbb R} \exp\left(-\dfrac{(x - y)^2}{4t}\right) \sin^2(3y)\,dy[/math]The computation is not simple at all, but using the fact that [imath]\displaystyle \int_{\mathbb R} \exp\left(-\dfrac{x^2}{a^2}\right)\,dx =\sqrt \pi |a|[/imath] and [imath]\displaystyle \int_{\mathbb R} \exp(-x^2) \cos(kx)\,dx = \sqrt \pi \exp\left(-\dfrac{k^2}4\right)[/imath], we have:
[math]
\begin{array}{rcl}
v(x, t) &=& \dfrac1{\sqrt{4\pi t}}\displaystyle \int_{\mathbb R} \exp\left(-\dfrac{(x - y)^2}{4t}\right) \sin^2(3y)\,dy\\
&=& \dfrac12 - \dfrac1{2\sqrt{4\pi t}} \displaystyle \int_{\mathbb R} \exp\left(-\dfrac{(y - x)^2}{4t}\right) \cos (6y)\,dy\\
&=& \dfrac12 - \dfrac1{2\sqrt \pi} \displaystyle \int_{\mathbb R} \exp(-y^2) \cos(12 \sqrt t y + 6x)\,dy\\
&=& \dfrac12 - \dfrac{\cos 6x}{2\sqrt \pi} \displaystyle \int_{\mathbb R} \exp(-y^2) \cos(12 \sqrt ty)\,dy\\
&=& \dfrac12 - \dfrac12 \exp(-36t) \cos(6x)
\end{array}
[/math]
You can check that this indeed satisfies the PDE.