Match the post#

0 + 1234 - 5! + (6 + 7)*(8 - 9) = 1101

987 + 65 + 43 + (2 + 1 + 0)! = 1101
 
\(\displaystyle 0! - 1 + 2 + 3 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1102\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3 + 2 - 1 + 0! = 1102\)

Edit: I had somehow missed a post before. Sorry about that.
 
\(\displaystyle 0!*1 + 2 + 3 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1103\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3 + 2 + 1*0! = 1103\)

Thanks for the help Kevin!
 
\(\displaystyle 0! + 1 + 2 + 3 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1104\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3 + 2 + 1 + 0! = 1104\)

You're welcome, Denis.
 
\(\displaystyle 0! + 1 + 2*3 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1105\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3*2 + 1 + 0! = 1105\)

Thanks again!
 
\(\displaystyle 0 + 1 + 2^3 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1106\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3^2 + 1 - 0! = 1106\)
 
\(\displaystyle 0! + 1 + 2^3 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1107\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3^2 + 1 + 0 = 1107\)
 
\(\displaystyle 0!/.1 - 2 + 3 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1108\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3 - 2 + 10 = 1108\)

Back tomorrow!
 
\(\displaystyle (0! + 1 + 2) \cdot 3 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1109\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3 \cdot (2 + 1 + 0!) = 1109\)
 
\(\displaystyle -0!/.1 + 23 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1110\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3/.2 - 1 - 0! = 1110\)
 
\(\displaystyle -0! + 12 + 3 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1111\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3! - 2 + 10 = 1111\)
 
\(\displaystyle 0 + 12 + 3 - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1112\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + 3 + 2 + 10 = 1112\)
 
\(\displaystyle (0! + 1) \cdot (2 + 3!) - 4!! + 5!! + 6!! + 7!! - 8 + 9!! = 1113\)

\(\displaystyle 9!! - 8 + 7!! + 6!! + 5!! - 4!! + (3! + 2) \cdot (1 + 0!) = 1113\)
 
\(\displaystyle 0*1 - 2 + 3 - 4!! + 5!! + 6!! + 7!! + 8 + 9!! = 1114\)

\(\displaystyle 9!! + 8 + 7!! + 6!! + 5!! - 4!! + 3 - 2 + 1*0 = 1114\)
 
0! + 1234 - 5! + 6 - 7 - 8 + 9 = 1115

987 + 65 + 43 + 2*10 = 1115
 
(0!/.1)^2*3 + 4*5*6*7 - 8*√9 = 1116

9*8 + 7*6*5*4 - 3! + 210 = 1116
 
-0! + 12 - 34 + 56 + 7 + 89 baker's dozen = 1117

98 baker's dozen - 7 - 6*5*4 - 32 + 1 + 0! = 1117

Ahem!!
 
-0! - 1 + 23*45 + 6 + 7 + 8*9 = 1118
\(\displaystyle 987 + 65*\sqrt{4} + 3 - 2 - 1 + 0! = 1118\)

Denis, you cannot use words such as "baker's dozen" for a solution. In the same way, you wouldn't introduce just plain "dozen" as in "5 dozen" for 60 or not
introduce "score" as in "10 score" for 200. Also (anyway),
your first solution is incorrect. It would have equalled 1197, instead of the needed
1117, even if writing "baker's dozen" were allowed.
 
Last edited:
\(\displaystyle 0! + 1 \cdot 23 + 4^5 + 6 + 7 \cdot 8 + 9 = 1119\)

\(\displaystyle 987 + 65 + 4^3 + 2 \cdot 1 + 0! = 1119\)
 
Denis, you cannot use words such as "baker's dozen" for a solution.
In the same way, you wouldn't introduce just plain "dozen" as in "5 dozen"
for 60 or not introduce "score" as in "10 score" for 200.
Agree 100%....there had been no activity for a week, and since
I started this thread, I simply thought I'd kinda post a joke.
It WAS successful, since it attracted you and Kevin :)

0 - 12 - 3! + 4^5 + 6*7 + 8*9 = 1120

9 + 87*(6 - 5)*(4 - 3) + 2^10 = 1120
 
Top