Limit that involves the angle addition and subtraction of tangent

wolly

Junior Member
Joined
Jul 18, 2018
Messages
71
limx0tan(a+x)+tan(ax)2tan(a)x2\lim_{x \to 0} \frac{tan(a+x)+tan(a-x)-2tan(a)}{x^2}
I know that

tan(a+x)=tan(a)+tan(x)1tan(a)tan(x)\tan(a+x)=\frac{tan(a)+tan(x)}{1-tan(a)tan(x)}
and

tan(ax)=tan(a)tan(x)1+tan(a)tan(x)\tan(a-x)=\frac{tan(a)-tan(x)}{1+tan(a)tan(x)}
Do You multiply each fraction with this (1-tan(a)tan(x))(1+tan(a)tan(x))?
I expanded the tangents and now I'm stuck.
 
In my textbook the answer is 4sin(2a)cos3(a)\frac{4sin(2a)}{cos^3(a)}
 
The answer that I got after calculating is
2tan(a)+tan2(a)2tan(a)+tan^2(a)
 
limx0tan(a+x)+tan(ax)2tan(a)x2\lim_{x \to 0} \frac{tan(a+x)+tan(a-x)-2tan(a)}{x^2}
I know that

tan(a+x)=tan(a)+tan(x)1tan(a)tan(x)\tan(a+x)=\frac{tan(a)+tan(x)}{1-tan(a)tan(x)}
and

tan(ax)=tan(a)tan(x)1+tan(a)tan(x)\tan(a-x)=\frac{tan(a)-tan(x)}{1+tan(a)tan(x)}
Do You multiply each fraction with this (1-tan(a)tan(x))(1+tan(a)tan(x))?
I expanded the tangents and now I'm stuck.
The two answers you show are not equivalent (as seen by graphing them); so you'll need to show us your actual work in order for us to see where you went wrong. Everything you said so far sounds fine.
 
limx0tan(a+x)+tan(ax)2tan(a)x2\lim_{x \to 0} \frac{tan(a+x)+tan(a-x)-2tan(a)}{x^2}
I know that

tan(a+x)=tan(a)+tan(x)1tan(a)tan(x)\tan(a+x)=\frac{tan(a)+tan(x)}{1-tan(a)tan(x)}
and

tan(ax)=tan(a)tan(x)1+tan(a)tan(x)\tan(a-x)=\frac{tan(a)-tan(x)}{1+tan(a)tan(x)}
Do You multiply each fraction with this (1-tan(a)tan(x))(1+tan(a)tan(x))?
I expanded the tangents and now I'm stuck.
limx0tan(a+x)+tan(ax)2tanax2\displaystyle \lim_{x\rightarrow 0}\frac{\tan(a + x) + \tan(a - x) - 2\tan a}{x^2}


=limx0tan(x+a)tan(xa)2tanax2= \displaystyle \lim_{x\rightarrow 0}\frac{\tan(x + a) - \tan(x - a) - 2\tan a}{x^2}


=limx0sec2(x+a)sec2(xa)2x= \displaystyle \lim_{x\rightarrow 0}\frac{\sec^2(x + a) - \sec^2(x - a)}{2x}


=limx02[ sec2(x+a)tan(x+a)sec2(xa)tan(xa) ]2= \displaystyle \lim_{x\rightarrow 0}\frac{2[ \ \sec^2(x + a)\tan(x + a) - \sec^2(x - a)\tan(x - a) \ ]}{2}


=limx0sec2(x+a)tan(x+a)sec2(xa)tan(xa)= ?= \displaystyle \lim_{x\rightarrow 0} \sec^2(x + a)\tan(x + a) - \sec^2(x - a)\tan(x - a) = \ ?
 
If I don't use L'hopital rule, I get this:

limx0tan(a+x)+tan(ax)2tanax2\displaystyle \lim_{x\rightarrow 0}\frac{\tan(a + x) + \tan(a - x) - 2\tan a}{x^2}


=limx02tan3atan2x+2tan2xtanax2(1tanatanx)(1+tanatanx)\displaystyle = \lim_{x\rightarrow 0}\frac{2\tan^3 a \tan^2 x + 2 \tan^2 x \tan a}{x^2(1 - \tan a \tan x)(1 + \tan a \tan x)}


=limx02tan3atan2x+2tan2xtanax2(1tan2atan2x)\displaystyle = \lim_{x\rightarrow 0}\frac{2\tan^3 a \tan^2 x + 2 \tan^2 x \tan a}{x^2(1 - \tan^2 a \tan^2 x)}

The next step is straightforward. Can you continue from here?

Note: I used the angles sum definition of tan(a+x) and tan(ax)\tan(a + x) \ \text{and} \ \tan(a - x) in post #1.
 
And the answer that I get îs
2tan3(a)+2tan(a)2tan^3(a)+2tan(a)
This îs not
4sin(2a)cos3(a)\frac{4sin(2a)}{cos^3(a)}
 
The correct answer is:

2tan3a+2tana=2tana(tan2a+1)=2tanasec2a=2sinacosa×1cos2a=2sinacos3a\displaystyle 2\tan^3 a + 2\tan a = 2\tan a(\tan^2 a + 1) = 2\tan a \sec^2 a = \frac{2\sin a}{\cos a}\times\frac{1}{\cos^2 a} = \frac{2\sin a}{\cos^3 a}

L'hopital rule gives the same answer, so it is confirmed that it is the correct answer.

4sin(2a)cos3(a)\frac{4sin(2a)}{cos^3(a)}
If this is the book answer, then there is a typo I think. If this is your answer, you should revise your steps to arrive to my steps in post #9.
 
Top