Limit, t->infty, of (t) [ (1 + 1/t)^(1/3) - 1]

Jenny4

New member
Joined
Jan 11, 2008
Messages
12
Hey, I'm having trouble with this. Any help will be appreciated greatly.
Find

limtt((1+1t)131)\displaystyle \lim_{t \to \infty} t\left(\left(1 + \frac{1}{t}\right)^{\frac{1}{3}} - 1\right)

My attempt so far:

t((1+1t)131)=((t3+t2)13t)\displaystyle t\left(\left(1 + \frac{1}{t}\right)^{\frac{1}{3}} - 1 \right) = \left((t^3 + t^2)^{\frac{1}{3}} - t \right)

Multiplying by conjugate : ((t3+t2)13t)((t3+t2)13+t)\displaystyle \left((t^3 + t^2)^{\frac{1}{3}} - t \right) \left((t^3 + t^2)^{\frac{1}{3}} + t \right)

(t3+t2)23t2(t3+t2)13+t\displaystyle \frac{(t^3 + t^2)^{\frac{2}{3}} - t^2}{(t^3 + t^2)^{\frac{1}{3}} +t}

I have no idea how to find the limit of that, or where to go from here (or indeed if this is the right way to go..)

Many thanks,
Jenny.
 
Re: Limits

Let x=(1+1/t)1/3\displaystyle x=(1+1/t)^{1/3}. Now multiply and divide by x2+x+1\displaystyle x^2+x+1.
 
Re: Limits

Hello, Jenny!

Find:   limtt[(1+1t)131]\displaystyle \text{Find: }\;\lim_{t \to \infty} t\left[\left(1 + \frac{1}{t}\right)^{\frac{1}{3}} - 1\right]

My attempt so far:

t[(1+1t)131]  =  (t3+t2)13t\displaystyle t\left[\left(1 + \frac{1}{t}\right)^{\frac{1}{3}} - 1 \right] \;= \;\left(t^3 + t^2\right)^{\frac{1}{3}} - t . . . .Good!

Your conjugate was incorrect . . .

There is a cube root in there.
We must use the form: .(ab)(a2+ab+b2)  =  a3b3\displaystyle (a - b)(a^2+ab + b^2) \;=\;a^3-b^3


Multiply top and bottom by: .(t3+t2)23+t(t3+t2)13+t2\displaystyle (t^3+t^2)^{\frac{2}{3}} + t(t^3+t^2)^{\frac{1}{3}} + t^2

(t3+t2)13t1(t3+t2)23+t(t3+t2)13+t2(t3+t2)23+t(t3+t2)13+t2  =  (t3+t2)t3(t3+t2)23+t(t3+t2)13+t2\displaystyle \frac{(t^3+t^2)^{\frac{1}{3}} - t}{1}\cdot\frac{(t^3+t^2)^{\frac{2}{3}} + t(t^3+t^2)^{\frac{1}{3}} + t^2}{(t^3+t^2)^{\frac{2}{3}} + t(t^3+t^2)^{\frac{1}{3}} + t^2} \;=\;\frac{(t^3+t^2) - t^3}{(t^3+t^2)^{\frac{2}{3}} + t(t^3+t^2)^{\frac{1}{3}} + t^2}

. . =  t2(t3+t2)23+t(t3+t2)13+t2  =  t2[t3(1+1t)]23+t[t3(1+1t)]13+t2\displaystyle = \;\frac{t^2}{(t^3+t^2)^{\frac{2}{3}} + t(t^3+t^2)^{\frac{1}{3}} + t^2} \;=\;\frac{t^2}{\left[t^3\left(1 + \frac{1}{t}\right)\right]^{\frac{2}{3}} + t\left[t^3\left(1 + \frac{1}{t}\right)\right]^{\frac{1}{3}} + t^2}

. . =  t2t2(1+1t)23+t2(1+1t)13+t2  =  t2t2[(1+1t)23+(1+1t)13+1]\displaystyle = \;\frac{t^2}{t^2\left(1+\frac{1}{t}\right)^{\frac{2}{3}} + t^2\left(1 + \frac{1}{t}\right)^{\frac{1}{3}} + t^2} \;=\; \frac{t^2}{t^2\left[(1+\frac{1}{t})^{\frac{2}{3}} + (1 + \frac{1}{t})^{\frac{1}{3}} + 1\right]}

. . =  1(1+1t)23+(1+1t)13+1\displaystyle = \;\frac{1}{(1+\frac{1}{t})^{\frac{2}{3}} + (1 + \frac{1}{t})^{\frac{1}{3}} + 1}


Then:   limt1(1+1t)23+(1+1t)13+1  =  1(1+0)23+(1+0)13+1  =  11+1+1  =  13\displaystyle \text{Then: }\;\lim_{t\to\infty}\,\frac{1}{(1+\frac{1}{t})^{\frac{2}{3}} + (1 + \frac{1}{t})^{\frac{1}{3}} + 1} \;=\;\frac{1}{(1+0)^{\frac{2}{3}} + (1+0)^{\frac{1}{3}} + 1} \;=\;\frac{1}{1+1+1} \;=\;\boxed{\frac{1}{3}}

 
Re: Limits

Thank you both so much. x

I don't think I could've spotted that. :(
 
Top