Hey, I'm having trouble with this. Any help will be appreciated greatly.
Find
\(\displaystyle \lim_{t \to \infty} t\left(\left(1 + \frac{1}{t}\right)^{\frac{1}{3}} - 1\right)\)
My attempt so far:
\(\displaystyle t\left(\left(1 + \frac{1}{t}\right)^{\frac{1}{3}} - 1 \right) = \left((t^3 + t^2)^{\frac{1}{3}} - t \right)\)
Multiplying by conjugate : \(\displaystyle \left((t^3 + t^2)^{\frac{1}{3}} - t \right) \left((t^3 + t^2)^{\frac{1}{3}} + t \right)\)
\(\displaystyle \frac{(t^3 + t^2)^{\frac{2}{3}} - t^2}{(t^3 + t^2)^{\frac{1}{3}} +t}\)
I have no idea how to find the limit of that, or where to go from here (or indeed if this is the right way to go..)
Many thanks,
Jenny.
Find
\(\displaystyle \lim_{t \to \infty} t\left(\left(1 + \frac{1}{t}\right)^{\frac{1}{3}} - 1\right)\)
My attempt so far:
\(\displaystyle t\left(\left(1 + \frac{1}{t}\right)^{\frac{1}{3}} - 1 \right) = \left((t^3 + t^2)^{\frac{1}{3}} - t \right)\)
Multiplying by conjugate : \(\displaystyle \left((t^3 + t^2)^{\frac{1}{3}} - t \right) \left((t^3 + t^2)^{\frac{1}{3}} + t \right)\)
\(\displaystyle \frac{(t^3 + t^2)^{\frac{2}{3}} - t^2}{(t^3 + t^2)^{\frac{1}{3}} +t}\)
I have no idea how to find the limit of that, or where to go from here (or indeed if this is the right way to go..)
Many thanks,
Jenny.