Find x→0+limlog(1+2x)xlogx
Can I do this:
x→0+limlog(1+2x)xlogx=limx→0+log(1+2x)limx→0+xlogx=limx→0+log(1+2x)limx→0+x1logx=limx→0+log(1+2x)limx→0+−x
where l'Hopital's rule is applied to the numerator only. Then reapply l'Hopital's rule again:
x→0+limlog(1+2x)−x=x→0+lim1+2x2−1=−21
Lemme know if my divide and conquer approach with l'Hopital's rule is legit.
Can I do this:
x→0+limlog(1+2x)xlogx=limx→0+log(1+2x)limx→0+xlogx=limx→0+log(1+2x)limx→0+x1logx=limx→0+log(1+2x)limx→0+−x
where l'Hopital's rule is applied to the numerator only. Then reapply l'Hopital's rule again:
x→0+limlog(1+2x)−x=x→0+lim1+2x2−1=−21
Lemme know if my divide and conquer approach with l'Hopital's rule is legit.