Find \(\displaystyle \lim_{x \to 0^{+}}\frac{x \log{x}}{\log{(1+2x)}}\)
Can I do this:
\(\displaystyle \lim_{x \to 0^{+}}\frac{x \log{x}}{\log{(1+2x)}}= \frac{\lim_{x \to 0^{+}} x \log{x}}{\lim_{x \to 0^{+}} \log{(1+2x)}}=\frac{\lim_{x \to 0^{+}} \frac{\log{x}}{\frac{1}{x}}}{\lim_{x \to 0^{+}} \log{(1+2x)}}=\frac{\lim_{x \to 0^{+}} -x}{\lim_{x \to 0^{+}} \log{(1+2x)}}\)
where l'Hopital's rule is applied to the numerator only. Then reapply l'Hopital's rule again:
\(\displaystyle \lim_{x \to 0^+} \frac{-x}{\log (1+2x)}=\lim_{x \to 0^+} \frac {-1}{\frac{2}{1+2x}}=-\frac{1}{2}\)
Lemme know if my divide and conquer approach with l'Hopital's rule is legit.
Can I do this:
\(\displaystyle \lim_{x \to 0^{+}}\frac{x \log{x}}{\log{(1+2x)}}= \frac{\lim_{x \to 0^{+}} x \log{x}}{\lim_{x \to 0^{+}} \log{(1+2x)}}=\frac{\lim_{x \to 0^{+}} \frac{\log{x}}{\frac{1}{x}}}{\lim_{x \to 0^{+}} \log{(1+2x)}}=\frac{\lim_{x \to 0^{+}} -x}{\lim_{x \to 0^{+}} \log{(1+2x)}}\)
where l'Hopital's rule is applied to the numerator only. Then reapply l'Hopital's rule again:
\(\displaystyle \lim_{x \to 0^+} \frac{-x}{\log (1+2x)}=\lim_{x \to 0^+} \frac {-1}{\frac{2}{1+2x}}=-\frac{1}{2}\)
Lemme know if my divide and conquer approach with l'Hopital's rule is legit.