hollow circular shaft

No, you try to do practice problems every day. Go back and relearn what you don't remember how to do.
i'll try to look up the thing i'm missing

No, you got the bounds of integration wrong and you didn't finish!
if the bounds wrong, give me the correct ones

sin11sin11r2(rsinu)2rcosudu=π2π2r2cos2udu\displaystyle \int_{\sin^{-1}-1}^{\sin^{-1}1}\sqrt{r^2 - (r\sin u)^2} r\cos u du = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^2\cos^2 u du

=r22π2π21+cos2udu=r22(u+12sin2u)π2π2\displaystyle = \frac{r^2}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 + \cos 2u du = \frac{r^2}{2}(u + \frac{1}{2}\sin 2u)\bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}

=r22(π2+12sinππ2sinπ)=r22(π2+π2)\displaystyle = \frac{r^2}{2}(\frac{\pi}{2} + \frac{1}{2}\sin \pi - -\frac{\pi}{2} - \sin -\pi) = \frac{r^2}{2}(\frac{\pi}{2} + \frac{\pi}{2})

=r22(π)=πr22\displaystyle = \frac{r^2}{2}(\pi) = \frac{\pi r^2}{2}

area of half a circle
 
i'll try to look up the thing i'm missing


if the bounds wrong, give me the correct ones

sin11sin11r2(rsinu)2rcosudu=π2π2r2cos2udu\displaystyle \int_{\sin^{-1}-1}^{\sin^{-1}1}\sqrt{r^2 - (r\sin u)^2} r\cos u du = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^2\cos^2 u du

=r22π2π21+cos2udu=r22(u+12sin2u)π2π2\displaystyle = \frac{r^2}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 + \cos 2u du = \frac{r^2}{2}(u + \frac{1}{2}\sin 2u)\bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}

=r22(π2+12sinππ2sinπ)=r22(π2+π2)\displaystyle = \frac{r^2}{2}(\frac{\pi}{2} + \frac{1}{2}\sin \pi - -\frac{\pi}{2} - \sin -\pi) = \frac{r^2}{2}(\frac{\pi}{2} + \frac{\pi}{2})

=r22(π)=πr22\displaystyle = \frac{r^2}{2}(\pi) = \frac{\pi r^2}{2}

area of half a circle
Good!

-Dan
 
i'll try to look up the thing i'm missing


if the bounds wrong, give me the correct ones

sin11sin11r2(rsinu)2rcosudu=π2π2r2cos2udu\displaystyle \int_{\sin^{-1}-1}^{\sin^{-1}1}\sqrt{r^2 - (r\sin u)^2} r\cos u du = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^2\cos^2 u du

=r22π2π21+cos2udu=r22(u+12sin2u)π2π2\displaystyle = \frac{r^2}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 + \cos 2u du = \frac{r^2}{2}(u + \frac{1}{2}\sin 2u)\bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}

=r22(π2+12sinππ2sinπ)=r22(π2+π2)\displaystyle = \frac{r^2}{2}(\frac{\pi}{2} + \frac{1}{2}\sin \pi - -\frac{\pi}{2} - \sin -\pi) = \frac{r^2}{2}(\frac{\pi}{2} + \frac{\pi}{2})

=r22(π)=πr22\displaystyle = \frac{r^2}{2}(\pi) = \frac{\pi r^2}{2}

area of half a circle
OKay so now back to the original problem of calculating "area polar moment of inertia".

What is the "area polar moment of inertia" of a solid circular shaft?
 
Good!

-Dan
thank

OKay so now back to the original problem of calculating "area polar moment of inertia".

What is the "area polar moment of inertia" of a solid circular shaft?
J=r2dA=2rrx2r2x2+13(r2x2)32dx\displaystyle J = \int r^2 dA = 2\int_{-r}^{r}x^2\sqrt{r^2 - x^2} + \frac{1}{3}(r^2 - x^2)^{\frac{3}{2}} dx
 
Top