i'll try to look up the thing i'm missing
if the bounds wrong, give me the correct ones
∫ sin − 1 − 1 sin − 1 1 r 2 − ( r sin u ) 2 r cos u d u = ∫ − π 2 π 2 r 2 cos 2 u d u \displaystyle \int_{\sin^{-1}-1}^{\sin^{-1}1}\sqrt{r^2 - (r\sin u)^2} r\cos u du = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^2\cos^2 u du ∫ s i n − 1 − 1 s i n − 1 1 r 2 − ( r sin u ) 2 r cos u d u = ∫ − 2 π 2 π r 2 cos 2 u d u
= r 2 2 ∫ − π 2 π 2 1 + cos 2 u d u = r 2 2 ( u + 1 2 sin 2 u ) ∣ − π 2 π 2 \displaystyle = \frac{r^2}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 + \cos 2u du = \frac{r^2}{2}(u + \frac{1}{2}\sin 2u)\bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2 r 2 ∫ − 2 π 2 π 1 + cos 2 u d u = 2 r 2 ( u + 2 1 sin 2 u ) ∣ ∣ ∣ ∣ ∣ − 2 π 2 π
= r 2 2 ( π 2 + 1 2 sin π − − π 2 − sin − π ) = r 2 2 ( π 2 + π 2 ) \displaystyle = \frac{r^2}{2}(\frac{\pi}{2} + \frac{1}{2}\sin \pi - -\frac{\pi}{2} - \sin -\pi) = \frac{r^2}{2}(\frac{\pi}{2} + \frac{\pi}{2}) = 2 r 2 ( 2 π + 2 1 sin π − − 2 π − sin − π ) = 2 r 2 ( 2 π + 2 π )
= r 2 2 ( π ) = π r 2 2 \displaystyle = \frac{r^2}{2}(\pi) = \frac{\pi r^2}{2} = 2 r 2 ( π ) = 2 π r 2
area of half a circle