logistic_guy
Senior Member
- Joined
- Apr 17, 2024
- Messages
- 1,054
Solve the heat equation \(\displaystyle k\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \ \ \ 0 < x < L, \ \ \ t > 0 \ \ \) subject to the given conditions. Assume a rod of length \(\displaystyle L\).
\(\displaystyle u(0,t) = 0, \ \ \ u(L,t) = 0, \ \ \ t > 0\)
\(\displaystyle u(x,0) =\begin{cases}1 & \ \ \ 0 <x<L/2\\0 & \ \ \ L/2 < x < L\end{cases} \)
\(\displaystyle u(0,t) = 0, \ \ \ u(L,t) = 0, \ \ \ t > 0\)
\(\displaystyle u(x,0) =\begin{cases}1 & \ \ \ 0 <x<L/2\\0 & \ \ \ L/2 < x < L\end{cases} \)