Find the value of k if x^2+5x+k=0 has one root three times g

\(\displaystyle \L
\begin{array}{l}
x^2 + 5x + k = (x - r)(x - 3r) \\
x^2 + 5x + k = x^2 - 4rx + 3r^2 \\
\Rightarrow \; - 4r = 5\quad \& \quad 3r^2 = k. \\
\end{array}\)

Now solve for k.
 
Re: Find the value of k if x^2+5x+k=0 has one root three tim

Hello, Kimmy!

Here's a back-door approach . . .


Find the value of k\displaystyle k if x2+5x+k=0\displaystyle x^2\,+\,5x\,+\,k\:=\:0 has one root three times greater than the other.

You may not be familiar with this theorem.

If the quadratic x2+ax+b=  0\displaystyle x^2\,+\,ax\,+b\:=\;0 has roots r\displaystyle r and s\displaystyle s,
. . then: r+s=a,    rs=b\displaystyle \:r\,+\,s\:=\:-a,\;\;rs\:=\:b

In baby-talk: .The sum of the roots is the negative of the x\displaystyle x-coefficient;
. . . . . . . . . . .The product of the roots is the constant term.


Let the two roots be r\displaystyle r and 3r\displaystyle 3r

Then we have: r+3r=5        4r=5r3r=k        3r2=k    (1)(2)\displaystyle \:\begin{array}{cc}r\,+\,3r\:=\:-5\;\; &\Rightarrow & \;\;4r\:=\:-5 \\ r\cdot3r\:=\:k\;\; & \Rightarrow & \;\;3r^2\:=\:k\end{array}\;\;\begin{array}{cc}(1)\\(2)\end{array}

From (1), we have: r=54\displaystyle \:r\:=\:-\frac{5}{4}

Substitute into (2): \(\displaystyle \:k\:=\:3r^2\:=\:3\left(-\frac{5}{4}\right)^2\;\;\Rightarrow\;\;\L k\:=\:\frac{75}{16}\)

 
Top