Express cos(α2)cos(\frac{\alpha}{2}) and sin(α2)sin(\frac{\alpha}{2}) in terms of sin(α)sin(\alpha)

Aion

Junior Member
Joined
May 8, 2018
Messages
201
Problem.

Express cos(α2)cos(\frac{\alpha}{2}) and sin(α2)sin(\frac{\alpha}{2}) in terms of sin(α)sin(\alpha) if 3π2α5π2\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}.

Here's my attempt at solving this problem. Could someone please review my reasoning and let me know if it's correct?

sin(α)=2sin(α2)cos(α2)sin(\alpha)=2sin(\frac{\alpha}{2})cos(\frac{\alpha}{2})sin2(α2)+cos2(α2)=1sin^2(\frac{\alpha}{2})+cos^2(\frac{\alpha}{2})=1
By addition and subtraction of the above identities we obtain

sin(α2)+cos(α2)=±1+sin(α)sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}sin(α2)cos(α2)=±1sin(α)sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})=\pm\sqrt{1-sin(\alpha)}
Adding and subtracting again, we have

2sin(α2)=±1+sin(α)±1sin(α)2sin(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}\pm\sqrt{1-sin(\alpha)}2cos(α2)=±1+sin(α)1sin(α)2cos(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}\mp\sqrt{1-sin(\alpha)}
Since

sin(α2)+cos(α2)=2(12sin(α)+12cos(α))=2sin(α2+π4)sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})=\sqrt{2}(\frac{1}{\sqrt{2}}sin(\alpha)+\frac{1}{\sqrt{2}}cos(\alpha))=\sqrt{2}sin(\frac{\alpha}{2}+\frac{\pi}{4})
The expression is positive if

2kππ4<α2<2kπ+3π42k\pi-\frac{\pi}{4} < \frac{\alpha}{2} < 2k\pi + \frac{3\pi}{4}
Similarly
sin(α2)cos(α2)=2(12sin(α)12cos(α))=2sin(α2π4)sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})=\sqrt{2}(\frac{1}{\sqrt{2}}sin(\alpha)-\frac{1}{\sqrt{2}}cos(\alpha))=\sqrt{2}sin(\frac{\alpha}{2}-\frac{\pi}{4})
And this positive if

2kπ+π4<α2<2kπ+5π42k\pi+\frac{\pi}{4} < \frac{\alpha}{2} < 2k\pi + \frac{5\pi}{4}
And negative otherwise.

The condition for α\alpha as 3π2α5π2\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2} can be rewritten as π2απ2\frac{-\pi}{2} \leq \alpha \leq \frac{\pi}{2}. We can now draw the possible cases on a circle.


Case (1): For π2απ4\frac{-\pi}{2} \leq \alpha \leq \frac{-\pi}{4}

sin(α2)+cos(α2)0sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\leq 0sin(α2)cos(α2)0sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\leq 0.
Therefore

sin(α2)=12(1+sin(α)+1sin(α))sin(\frac{\alpha}{2})=-\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})cos(α2)=12(1+sin(α)1sin(α))cos(\frac{\alpha}{2})=-\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})
Case (2): For π4απ4\frac{-\pi}{4} \leq \alpha \leq \frac{\pi}{4}

sin(α2)+cos(α2)0sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\geq 0sin(α2)cos(α2)0sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\leq 0.

Thus
sin(α2)=12(1+sin(α)1sin(α))sin(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})cos(α2)=12(1+sin(α)+1sin(α))cos(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})
Case (3): For π4απ2\frac{\pi}{4} \leq \alpha \leq \frac{\pi}{2}

sin(α2)+cos(α2)0sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\geq 0sin(α2)cos(α2)0sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\geq 0.

Therefore
sin(α2)=12(1+sin(α)+1sin(α))sin(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)}) cos(α2)=12(1+sin(α)1sin(α))cos(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})
 

Attachments

  • Trig problem.png
    Trig problem.png
    69.4 KB · Views: 1
Problem.

Express cos(α2)cos(\frac{\alpha}{2}) and sin(α2)sin(\frac{\alpha}{2}) in terms of sin(α)sin(\alpha) if 3π2α5π2\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}.

Here's my attempt at solving this problem. Could someone please review my reasoning and let me know if it's correct?

sin(α)=2sin(α2)cos(α2)sin(\alpha)=2sin(\frac{\alpha}{2})cos(\frac{\alpha}{2})sin2(α2)+cos2(α2)=1sin^2(\frac{\alpha}{2})+cos^2(\frac{\alpha}{2})=1
By addition and subtraction of the above identities we obtain

sin(α2)+cos(α2)=±1+sin(α)sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}sin(α2)cos(α2)=±1sin(α)sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})=\pm\sqrt{1-sin(\alpha)}
Adding and subtracting again, we have

2sin(α2)=±1+sin(α)±1sin(α)2sin(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}\pm\sqrt{1-sin(\alpha)}2cos(α2)=±1+sin(α)1sin(α)2cos(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}\mp\sqrt{1-sin(\alpha)}
Since

sin(α2)+cos(α2)=2(12sin(α)+12cos(α))=2sin(α2+π4)sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})=\sqrt{2}(\frac{1}{\sqrt{2}}sin(\alpha)+\frac{1}{\sqrt{2}}cos(\alpha))=\sqrt{2}sin(\frac{\alpha}{2}+\frac{\pi}{4})
The expression is positive if

2kππ4<α2<2kπ+3π42k\pi-\frac{\pi}{4} < \frac{\alpha}{2} < 2k\pi + \frac{3\pi}{4}
Similarly
sin(α2)cos(α2)=2(12sin(α)12cos(α))=2sin(α2π4)sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})=\sqrt{2}(\frac{1}{\sqrt{2}}sin(\alpha)-\frac{1}{\sqrt{2}}cos(\alpha))=\sqrt{2}sin(\frac{\alpha}{2}-\frac{\pi}{4})
And this positive if

2kπ+π4<α2<2kπ+5π42k\pi+\frac{\pi}{4} < \frac{\alpha}{2} < 2k\pi + \frac{5\pi}{4}
And negative otherwise.

The condition for α\alpha as 3π2α5π2\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2} can be rewritten as π2απ2\frac{-\pi}{2} \leq \alpha \leq \frac{\pi}{2}. We can now draw the possible cases on a circle.


Case (1): For π2απ4\frac{-\pi}{2} \leq \alpha \leq \frac{-\pi}{4}

sin(α2)+cos(α2)0sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\leq 0sin(α2)cos(α2)0sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\leq 0.
Therefore

sin(α2)=12(1+sin(α)+1sin(α))sin(\frac{\alpha}{2})=-\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})cos(α2)=12(1+sin(α)1sin(α))cos(\frac{\alpha}{2})=-\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})
Case (2): For π4απ4\frac{-\pi}{4} \leq \alpha \leq \frac{\pi}{4}

sin(α2)+cos(α2)0sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\geq 0sin(α2)cos(α2)0sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\leq 0.

Thus
sin(α2)=12(1+sin(α)1sin(α))sin(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})cos(α2)=12(1+sin(α)+1sin(α))cos(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})
Case (3): For π4απ2\frac{\pi}{4} \leq \alpha \leq \frac{\pi}{2}

sin(α2)+cos(α2)0sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\geq 0sin(α2)cos(α2)0sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\geq 0.

Therefore
sin(α2)=12(1+sin(α)+1sin(α))sin(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)}) cos(α2)=12(1+sin(α)1sin(α))cos(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})
I did not see what you have done. But isn't it straightforward to use the half angle formula:

sinα2=±1cosα2\displaystyle \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}

cosα=1sin2α\cos \alpha = \sqrt{1 - \sin^2 \alpha}

Substitute this in the first expression:

sinα2=±11sin2α2\displaystyle \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \sqrt{1 - \sin^2 \alpha}}{2}}

You can do the same for cosα2\displaystyle \cos \frac{\alpha}{2}
 
I did not see what you have done. But isn't it straightforward to use the half angle formula:

sinα2=±1cosα2\displaystyle \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}

cosα=1sin2α\cos \alpha = \sqrt{1 - \sin^2 \alpha}

Substitute this in the first expression:

sinα2=±11sin2α2\displaystyle \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \sqrt{1 - \sin^2 \alpha}}{2}}

You can do the same for cosα2\displaystyle \cos \frac{\alpha}{2}
You're right that simplifies the problem a lot! However, the interval at which we should take each sign of the expression remains to be determined.
 
The book I'm using has a solution but it doesn't match mine. That's why I'm trying to figure out what I did wrong.

Here it is:

cos(α2)=12(2+21sin2(α)=12(1+sin(α)+1sin(α))cos(\frac{\alpha}{2})=-\frac{1}{2}(\sqrt{2+2\sqrt{1-sin^2(\alpha)}}=-\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})sin(α2)=±12(221sin2(α)sin(\frac{\alpha}{2})=\pm\frac{1}{2}(\sqrt{2-2\sqrt{1-sin^2(\alpha)}}
And plus sign be taken if 3π2α2π\frac{3\pi}{2} \leq\alpha\leq 2\pi, the minus sign if 2πα5π22\pi\leq \alpha \leq\frac{5\pi}{2}.

For all α\alpha in the interval 3π2α5π2\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}, we can write sin(α2)=12(1sinα1+sinα).sin(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1-sin\alpha}-\sqrt{1+sin\alpha}).
 
The book I'm using has a solution but it doesn't match mine. That's why I'm trying to figure out what I did wrong.

Here it is:

cos(α2)=12(2+21sin2(α)=12(1+sin(α)+1sin(α))cos(\frac{\alpha}{2})=-\frac{1}{2}(\sqrt{2+2\sqrt{1-sin^2(\alpha)}}=-\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})sin(α2)=±12(221sin2(α)sin(\frac{\alpha}{2})=\pm\frac{1}{2}(\sqrt{2-2\sqrt{1-sin^2(\alpha)}}
And plus sign be taken if 3π2α2π\frac{3\pi}{2} \leq\alpha\leq 2\pi, the minus sign if 2πα5π22\pi\leq \alpha \leq\frac{5\pi}{2}.

For all α\alpha in the interval 3π2α5π2\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}, we can write sin(α2)=12(1sinα1+sinα).sin(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1-sin\alpha}-\sqrt{1+sin\alpha}).
This is the same as I did.

sinα2=±11sin2α2=±221sin2α4=±12221sin2α\displaystyle \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \sqrt{1 - \sin^2 \alpha}}{2}} = \pm \sqrt{\frac{2 - 2\sqrt{1 - \sin^2 \alpha}}{4}} = \pm\frac{1}{2}\sqrt{2 - 2\sqrt{1 - \sin^2 \alpha}}

To be more precise about the interval, convert it to α2\displaystyle \frac{\alpha}{2}.

3π4α25π4\displaystyle \frac{3\pi}{4} \leq \frac{\alpha}{2} \leq \frac{5\pi}{4}

So, sinα2\displaystyle \sin \frac{\alpha}{2} will be positive in this interval when 3π4α2<π\displaystyle \frac{3\pi}{4} \leq \frac{\alpha}{2} < \pi

Or

3π2α<2π\displaystyle \frac{3\pi}{2} \leq \alpha < 2\pi

And negative when

2π<α5π2\displaystyle 2\pi < \alpha \leq \frac{5\pi}{2}

The same concept can be applied to cosα2\displaystyle \cos \frac{\alpha}{2}.
 
This is the same as I did.

sinα2=±11sin2α2=±221sin2α4=±12221sin2α\displaystyle \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \sqrt{1 - \sin^2 \alpha}}{2}} = \pm \sqrt{\frac{2 - 2\sqrt{1 - \sin^2 \alpha}}{4}} = \pm\frac{1}{2}\sqrt{2 - 2\sqrt{1 - \sin^2 \alpha}}

To be more precise about the interval, convert it to α2\displaystyle \frac{\alpha}{2}.

3π4α25π4\displaystyle \frac{3\pi}{4} \leq \frac{\alpha}{2} \leq \frac{5\pi}{4}

So, sinα2\displaystyle \sin \frac{\alpha}{2} will be positive in this interval when 3π4α2<π\displaystyle \frac{3\pi}{4} \leq \frac{\alpha}{2} < \pi

Or

3π2α<2π\displaystyle \frac{3\pi}{2} \leq \alpha < 2\pi

And negative when

2π<α5π2\displaystyle 2\pi < \alpha \leq \frac{5\pi}{2}

The same concept can be applied to cosα2\displaystyle \cos \frac{\alpha}{2}.

This is the same as I did.

sinα2=±11sin2α2=±221sin2α4=±12221sin2α\displaystyle \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \sqrt{1 - \sin^2 \alpha}}{2}} = \pm \sqrt{\frac{2 - 2\sqrt{1 - \sin^2 \alpha}}{4}} = \pm\frac{1}{2}\sqrt{2 - 2\sqrt{1 - \sin^2 \alpha}}

To be more precise about the interval, convert it to α2\displaystyle \frac{\alpha}{2}.

3π4α25π4\displaystyle \frac{3\pi}{4} \leq \frac{\alpha}{2} \leq \frac{5\pi}{4}

So, sinα2\displaystyle \sin \frac{\alpha}{2} will be positive in this interval when 3π4α2<π\displaystyle \frac{3\pi}{4} \leq \frac{\alpha}{2} < \pi

Or

3π2α<2π\displaystyle \frac{3\pi}{2} \leq \alpha < 2\pi

And negative when

2π<α5π2\displaystyle 2\pi < \alpha \leq \frac{5\pi}{2}

The same concept can be applied to cosα2\displaystyle \cos \frac{\alpha}{2}.
Thanks for the help, Mario. I overcomplicated things unnecessarily. By converting the interval for α2\frac{\alpha}{2} everything makes sense :).

Since we are working in the interval 3π2α5π2\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}, cos(α)0cos(\alpha) \geq 0, and so cos(α)=1sin2(α)cos(\alpha)=\sqrt{1-sin^2(\alpha)}.

Hence sinα2=±11sin2α2=±221sin2α4=±12221sin2α\displaystyle \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \sqrt{1 - \sin^2 \alpha}}{2}} = \pm \sqrt{\frac{2 - 2\sqrt{1 - \sin^2 \alpha}}{4}} = \pm\frac{1}{2}\sqrt{2 - 2\sqrt{1 - \sin^2 \alpha}}
And sin(α2)sin(\frac{\alpha}{2}) is positive if 3π4α2π\frac{3\pi}{4} \leq \frac{\alpha}{2} \leq \pi and negative if πα25π4\pi \leq \frac{\alpha}{2} \leq \frac{5\pi}{4}.

Similarly, since cos(α2)cos(\frac{\alpha}{2}) is negative in the interval 3π4α25π4\frac{3\pi}{4} \leq \frac{\alpha}{2} \leq \frac{5\pi}{4}

cosα2=1+1sin2α2=2+21sin2α4=122+21sin2α\displaystyle \cos \frac{\alpha}{2} = - \sqrt{\frac{1 + \sqrt{1 - \sin^2 \alpha}}{2}} = - \sqrt{\frac{2 + 2\sqrt{1 - \sin^2 \alpha}}{4}} = -\frac{1}{2}\sqrt{2 +2\sqrt{1 - \sin^2 \alpha}}
 
Thanks for the help, Mario. I overcomplicated things unnecessarily. By converting the interval for α2\frac{\alpha}{2} everything makes sense :).

Since we are working in the interval 3π2α5π2\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}, cos(α)0cos(\alpha) \geq 0, and so cos(α)=1sin2(α)cos(\alpha)=\sqrt{1-sin^2(\alpha)}.

Hence sinα2=±11sin2α2=±221sin2α4=±12221sin2α\displaystyle \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \sqrt{1 - \sin^2 \alpha}}{2}} = \pm \sqrt{\frac{2 - 2\sqrt{1 - \sin^2 \alpha}}{4}} = \pm\frac{1}{2}\sqrt{2 - 2\sqrt{1 - \sin^2 \alpha}}
And sin(α2)sin(\frac{\alpha}{2}) is positive if 3π4α2π\frac{3\pi}{4} \leq \frac{\alpha}{2} \leq \pi and negative if πα25π4\pi \leq \frac{\alpha}{2} \leq \frac{5\pi}{4}.

Similarly, since cos(α2)cos(\frac{\alpha}{2}) is negative in the interval 3π4α25π4\frac{3\pi}{4} \leq \frac{\alpha}{2} \leq \frac{5\pi}{4}

cosα2=1+1sin2α2=2+21sin2α4=122+21sin2α\displaystyle \cos \frac{\alpha}{2} = - \sqrt{\frac{1 + \sqrt{1 - \sin^2 \alpha}}{2}} = - \sqrt{\frac{2 + 2\sqrt{1 - \sin^2 \alpha}}{4}} = -\frac{1}{2}\sqrt{2 +2\sqrt{1 - \sin^2 \alpha}}
Also

sinα2=±12221sin2α=±12((1sin(α)1+sin(α))2=±12(1sin(α)1+sin(α))\sin \frac{\alpha}{2} = \pm\frac{1}{2}\sqrt{2 - 2\sqrt{1 - \sin^2 \alpha}}=\pm\frac{1}{2}(\sqrt{(\sqrt{1-sin(\alpha)}-\sqrt{1+sin(\alpha)})^2}=\pm\frac{1}{2}(\sqrt{1-sin(\alpha)}-\sqrt{1+sin(\alpha)})
 
Thanks for the help, Mario. I overcomplicated things unnecessarily. By converting the interval for α2\frac{\alpha}{2} everything makes sense :).

Since we are working in the interval 3π2α5π2\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}, cos(α)0cos(\alpha) \geq 0, and so cos(α)=1sin2(α)cos(\alpha)=\sqrt{1-sin^2(\alpha)}.

Hence sinα2=±11sin2α2=±221sin2α4=±12221sin2α\displaystyle \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \sqrt{1 - \sin^2 \alpha}}{2}} = \pm \sqrt{\frac{2 - 2\sqrt{1 - \sin^2 \alpha}}{4}} = \pm\frac{1}{2}\sqrt{2 - 2\sqrt{1 - \sin^2 \alpha}}
And sin(α2)sin(\frac{\alpha}{2}) is positive if 3π4α2π\frac{3\pi}{4} \leq \frac{\alpha}{2} \leq \pi and negative if πα25π4\pi \leq \frac{\alpha}{2} \leq \frac{5\pi}{4}.

Similarly, since cos(α2)cos(\frac{\alpha}{2}) is negative in the interval 3π4α25π4\frac{3\pi}{4} \leq \frac{\alpha}{2} \leq \frac{5\pi}{4}

cosα2=1+1sin2α2=2+21sin2α4=122+21sin2α\displaystyle \cos \frac{\alpha}{2} = - \sqrt{\frac{1 + \sqrt{1 - \sin^2 \alpha}}{2}} = - \sqrt{\frac{2 + 2\sqrt{1 - \sin^2 \alpha}}{4}} = -\frac{1}{2}\sqrt{2 +2\sqrt{1 - \sin^2 \alpha}}
It seems that you got the idea.

Also

sinα2=±12221sin2α=±12((1sin(α)1+sin(α))2=±12(1sin(α)1+sin(α))\sin \frac{\alpha}{2} = \pm\frac{1}{2}\sqrt{2 - 2\sqrt{1 - \sin^2 \alpha}}=\pm\frac{1}{2}(\sqrt{(\sqrt{1-sin(\alpha)}-\sqrt{1+sin(\alpha)})^2}=\pm\frac{1}{2}(\sqrt{1-sin(\alpha)}-\sqrt{1+sin(\alpha)})
I did not check this one, but since you worked in this problem a lot, I trust in your calculations to be correct.
 
Also

sinα2=±12221sin2α=±12((1sin(α)1+sin(α))2=±12(1sin(α)1+sin(α))\sin \frac{\alpha}{2} = \pm\frac{1}{2}\sqrt{2 - 2\sqrt{1 - \sin^2 \alpha}}=\pm\frac{1}{2}(\sqrt{(\sqrt{1-sin(\alpha)}-\sqrt{1+sin(\alpha)})^2}=\pm\frac{1}{2}(\sqrt{1-sin(\alpha)}-\sqrt{1+sin(\alpha)})
No that's quite right, all we can conclude is that its equal to the absolute value. sinα2=±12((1sin(α)1+sin(α))2)=±121sin(α)1+sin(α)\sin \frac{\alpha}{2} = \pm\frac{1}{2}\left(\sqrt{\left(\sqrt{1-sin(\alpha)}-\sqrt{1+sin(\alpha)}\right)^2}\right)=\pm\frac{1}{2}\left| \sqrt{1-sin(\alpha})-\sqrt{1+sin(\alpha)}\right|
However by the above reasoning in my original post for any α2(3π4,5π4)\frac{\alpha}{2} \in (\frac{3\pi}{4},\frac{5\pi}{4}) we know that

sin(α2)+cos(α2)0sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\leq 0 and sin(α2)sin(α2)0sin(\frac{\alpha}{2})-sin(\frac{\alpha}{2})\geq0, which implies that sin(α2)+cos(α2)=1+sin(α)sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})=-\sqrt{1+\sin(\alpha)} and sin(α2)cos(α2)=1sin(α),sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})=\sqrt{1-\sin(\alpha)}, hence 2sin(α2)=1sin(α)1+sin(α)2sin(\frac{\alpha}{2})=\sqrt{1-sin(\alpha)}-\sqrt{1+sin(\alpha)} for all α(3π2,5π2)\alpha \in (\frac{3\pi}{2},\frac{5\pi}{2}).
 
No that's quite right, all we can conclude is that its equal to the absolute value. sinα2=±12((1sin(α)1+sin(α))2)=±121sin(α)1+sin(α)\sin \frac{\alpha}{2} = \pm\frac{1}{2}\left(\sqrt{\left(\sqrt{1-sin(\alpha)}-\sqrt{1+sin(\alpha)}\right)^2}\right)=\pm\frac{1}{2}\left| \sqrt{1-sin(\alpha})-\sqrt{1+sin(\alpha)}\right|
However by the above reasoning in my original post for any α2(3π4,5π4)\frac{\alpha}{2} \in (\frac{3\pi}{4},\frac{5\pi}{4}) we know that

sin(α2)+cos(α2)0sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\leq 0 and sin(α2)sin(α2)0sin(\frac{\alpha}{2})-sin(\frac{\alpha}{2})\geq0, which implies that sin(α2)+cos(α2)=1+sin(α)sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})=-\sqrt{1+\sin(\alpha)} and sin(α2)cos(α2)=1sin(α),sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})=\sqrt{1-\sin(\alpha)}, hence 2sin(α2)=1sin(α)1+sin(α)2sin(\frac{\alpha}{2})=\sqrt{1-sin(\alpha)}-\sqrt{1+sin(\alpha)} for all α(3π2,5π2)\alpha \in (\frac{3\pi}{2},\frac{5\pi}{2}).
I agree.

👍

Bravo to catch where was your mistake!
 
Top