Problem.
Express [imath]cos(\frac{\alpha}{2})[/imath] and [imath]sin(\frac{\alpha}{2})[/imath] in terms of [imath]sin(\alpha)[/imath] if [imath]\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}[/imath].
Here's my attempt at solving this problem. Could someone please review my reasoning and let me know if it's correct?
[math]sin(\alpha)=2sin(\frac{\alpha}{2})cos(\frac{\alpha}{2})[/math][math]sin^2(\frac{\alpha}{2})+cos^2(\frac{\alpha}{2})=1[/math]
By addition and subtraction of the above identities we obtain
[math]sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}[/math][math]sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})=\pm\sqrt{1-sin(\alpha)}[/math]
Adding and subtracting again, we have
[math]2sin(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}\pm\sqrt{1-sin(\alpha)}[/math][math]2cos(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}\mp\sqrt{1-sin(\alpha)}[/math]
Since
[math]sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})=\sqrt{2}(\frac{1}{\sqrt{2}}sin(\alpha)+\frac{1}{\sqrt{2}}cos(\alpha))=\sqrt{2}sin(\frac{\alpha}{2}+\frac{\pi}{4})[/math]
The expression is positive if
[math]2k\pi-\frac{\pi}{4} < \frac{\alpha}{2} < 2k\pi + \frac{3\pi}{4}[/math]
Similarly
[math]sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})=\sqrt{2}(\frac{1}{\sqrt{2}}sin(\alpha)-\frac{1}{\sqrt{2}}cos(\alpha))=\sqrt{2}sin(\frac{\alpha}{2}-\frac{\pi}{4})[/math]
And this positive if
[math]2k\pi+\frac{\pi}{4} < \frac{\alpha}{2} < 2k\pi + \frac{5\pi}{4}[/math]
And negative otherwise.
The condition for [imath]\alpha[/imath] as [imath]\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}[/imath] can be rewritten as [imath]\frac{-\pi}{2} \leq \alpha \leq \frac{\pi}{2}[/imath]. We can now draw the possible cases on a circle.
Case (1): For [imath]\frac{-\pi}{2} \leq \alpha \leq \frac{-\pi}{4}[/imath]
[math]sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\leq 0[/math][math]sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\leq 0[/math].
Therefore
[math]sin(\frac{\alpha}{2})=-\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})[/math][math]cos(\frac{\alpha}{2})=-\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})[/math]
Case (2): For [imath]\frac{-\pi}{4} \leq \alpha \leq \frac{\pi}{4}[/imath]
[math]sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\geq 0[/math][math]sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\leq 0[/math].
Thus
[math]sin(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})[/math][math]cos(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})[/math]
Case (3): For [imath]\frac{\pi}{4} \leq \alpha \leq \frac{\pi}{2}[/imath]
[math]sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\geq 0[/math][math]sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\geq 0[/math].
Therefore
[math]sin(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})[/math] [math]cos(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})[/math]
Express [imath]cos(\frac{\alpha}{2})[/imath] and [imath]sin(\frac{\alpha}{2})[/imath] in terms of [imath]sin(\alpha)[/imath] if [imath]\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}[/imath].
Here's my attempt at solving this problem. Could someone please review my reasoning and let me know if it's correct?
[math]sin(\alpha)=2sin(\frac{\alpha}{2})cos(\frac{\alpha}{2})[/math][math]sin^2(\frac{\alpha}{2})+cos^2(\frac{\alpha}{2})=1[/math]
By addition and subtraction of the above identities we obtain
[math]sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}[/math][math]sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})=\pm\sqrt{1-sin(\alpha)}[/math]
Adding and subtracting again, we have
[math]2sin(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}\pm\sqrt{1-sin(\alpha)}[/math][math]2cos(\frac{\alpha}{2})=\pm\sqrt{1+sin(\alpha)}\mp\sqrt{1-sin(\alpha)}[/math]
Since
[math]sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})=\sqrt{2}(\frac{1}{\sqrt{2}}sin(\alpha)+\frac{1}{\sqrt{2}}cos(\alpha))=\sqrt{2}sin(\frac{\alpha}{2}+\frac{\pi}{4})[/math]
The expression is positive if
[math]2k\pi-\frac{\pi}{4} < \frac{\alpha}{2} < 2k\pi + \frac{3\pi}{4}[/math]
Similarly
[math]sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})=\sqrt{2}(\frac{1}{\sqrt{2}}sin(\alpha)-\frac{1}{\sqrt{2}}cos(\alpha))=\sqrt{2}sin(\frac{\alpha}{2}-\frac{\pi}{4})[/math]
And this positive if
[math]2k\pi+\frac{\pi}{4} < \frac{\alpha}{2} < 2k\pi + \frac{5\pi}{4}[/math]
And negative otherwise.
The condition for [imath]\alpha[/imath] as [imath]\frac{3\pi}{2} \leq \alpha \leq \frac{5\pi}{2}[/imath] can be rewritten as [imath]\frac{-\pi}{2} \leq \alpha \leq \frac{\pi}{2}[/imath]. We can now draw the possible cases on a circle.
Case (1): For [imath]\frac{-\pi}{2} \leq \alpha \leq \frac{-\pi}{4}[/imath]
[math]sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\leq 0[/math][math]sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\leq 0[/math].
Therefore
[math]sin(\frac{\alpha}{2})=-\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})[/math][math]cos(\frac{\alpha}{2})=-\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})[/math]
Case (2): For [imath]\frac{-\pi}{4} \leq \alpha \leq \frac{\pi}{4}[/imath]
[math]sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\geq 0[/math][math]sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\leq 0[/math].
Thus
[math]sin(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})[/math][math]cos(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})[/math]
Case (3): For [imath]\frac{\pi}{4} \leq \alpha \leq \frac{\pi}{2}[/imath]
[math]sin(\frac{\alpha}{2})+cos(\frac{\alpha}{2})\geq 0[/math][math]sin(\frac{\alpha}{2})-cos(\frac{\alpha}{2})\geq 0[/math].
Therefore
[math]sin(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}+\sqrt{1-sin(\alpha)})[/math] [math]cos(\frac{\alpha}{2})=\frac{1}{2}(\sqrt{1+sin(\alpha)}-\sqrt{1-sin(\alpha)})[/math]