Distance Traveled by a Particle & Curve Length

jenn9580

New member
Joined
Jan 10, 2007
Messages
29
Given:
x=5(sin t)^2
y=5(cos t)^2
0<t<pi

I am looking for the distance traveled by a particle, but seem to be stuck. I have the formula, but I think the problem is in my derivative. (dx/dt)=(10sin(t)cos(t))^2 (by the chain rule). I would like to then convert using the double-angle formula of 2sinxcosx=sin2x. I got 5sin^2(2t), but I think I am wrong. I can do the rest of the problem, I am just stuck with this part. Thanks!!
 
The derivative of x is 10sin(t)cos(t), no squares should be present.
The derivative of y is -10sin(t)cos(t).

You then do:

0π(dxdt)2+(dydt)2dt=0π200(sintcost)2dt\displaystyle \int_0^{\pi} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2} dt = \int_0^{\pi}\sqrt{200(\sin t \cos t)^2}dt

oh, also since you will get an absolute value, break it up:

0πsintcostdt=0π/2sintcostdtπ/2πsintcostdt\displaystyle \int_0^{\pi}|\sin t \cos t|dt = \int_0^{\pi/2}\sin t \cos t dt - \int_{\pi/2}^{\pi}\sin t \cos tdt
 
Given: x = 5sin2(t), y = 5cos2(t), 0<t<π, find Arc Length.\displaystyle Given: \ x \ = \ 5sin^{2}(t), \ y \ = \ 5cos^{2}(t), \ 0<t<\pi, \ find \ Arc \ Length.

Arc Length = ab[(dxdt)2+(dydt)2]1/2dt\displaystyle Arc \ Length \ = \ \int_{a}^{b}\bigg[\bigg(\frac{dx}{dt}\bigg)^{2}+\bigg(\frac{dy}{dt}\bigg)^{2}\bigg]^{1/2}dt

= 0π[(10sin(t)cos(t))2+(10sin(t)cos(t))2]1/2dt\displaystyle = \ \int_{0}^{\pi}[(10sin(t)cos(t))^{2}+(-10sin(t)cos(t))^{2}]^{1/2}dt

= 0π[200sin2(t)cos2(t)]1/2dt = 20π/2[200sin2(t)cos2(t)]1/2dt\displaystyle = \ \int_{0}^{\pi}[200sin^{2}(t)cos^{2}(t)]^{1/2}dt \ = \ 2\int_{0}^{\pi/2}[200sin^{2}(t)cos^{2}(t)]^{1/2}dt^{*}

= 2020π/2[sin2(t)cos2(t)]1/2dt\displaystyle = \ 20\sqrt2\int_{0}^{\pi/2}[sin^{2}(t)cos^{2}(t)]^{1/2}dt

= 2020π/2[(1cos(2t)2)(1+cos(2t)2)]1/2dt\displaystyle = \ 20\sqrt2 \int_{0}^{\pi/2}\bigg[\bigg(\frac{1-cos(2t)}{2}\bigg)\bigg(\frac{1+cos(2t)}{2}\bigg)\bigg]^{1/2}dt

= 2020π/2[1cos2(2t)4]1/2dt\displaystyle = \ 20\sqrt2 \int_{0}^{\pi/2}\bigg[\frac{1-cos^{2}(2t)}{4}\bigg]^{1/2}dt

= 1020π/2sin(2t)dt = 102[cos(2t)2]0π/2 = 52(1+1) = 102\displaystyle = \ 10\sqrt2 \int_{0}^{\pi/2}sin(2t)dt \ = \ 10\sqrt2\bigg[\frac{-cos(2t)}{2}\bigg]_{0}^{\pi/2} \ = \ 5\sqrt2(1+1) \ = \ 10\sqrt2

Note: Function is smooth from 0 to π/2 and then from π/2 to π.\displaystyle ^{*}Note: \ Function \ is \ smooth \ from \ 0 \ to \ \pi/2 \ and \ then \ from \ \pi/2 \ to \ \pi.

[attachment=0:f0f4vdjj]abc.jpg[/attachment:f0f4vdjj]
 

Attachments

  • abc.jpg
    abc.jpg
    24 KB · Views: 103
Another and easier way to find arc length:

Given: x=5sin2(t), y = 5cos2(t), and 0<t<π.\displaystyle Given: \ x = 5sin^{2}(t), \ y \ = \ 5cos^{2}(t), \ and \ 0<t<\pi.

x5 = sin2(t) and y5 = cos2(t), ergo x+y5 = 1, y = 5x.\displaystyle \frac{x}{5} \ = \ sin^{2}(t) \ and \ \frac{y}{5} \ = \ cos^{2}(t), \ ergo \ \frac{x+y}{5} \ = \ 1, \ y \ = \ 5-x.

When t goes from 0 to π/2, x goes from 0 to 5 and when t goes from π/2\displaystyle When \ t \ goes \ from \ 0 \ to \ \pi/2, \ x \ goes \ from \ 0 \ to \ 5 \ and \ when \ t \ goes \ from \ \pi/2

to π, x goes from 5 to 10.\displaystyle to \ \pi, \ x \ goes \ from \ 5 \ to \ 10.

Hence, Arc Length = 010[(1)2+1]1/2dx = 01021/2dx\displaystyle Hence, \ Arc \ Length \ = \ \int_{0}^{10}[(-1)^{2}+1]^{1/2}dx \ = \ \int_{0}^{10}2^{1/2}dx

= [21/2x]010 = 102. Removing the parameters is quicker.\displaystyle = \ [2^{1/2}x]_{0}^{10} \ = \ 10\sqrt2. \ Removing \ the \ parameters \ is \ quicker.

[attachment=0:10akzjwd]def.jpg[/attachment:10akzjwd]

Note: The easiest, by inspection of the graph (y = 5x), we have two isosceles right triangles, each\displaystyle Note: \ The \ easiest, \ by \ inspection \ of \ the \ graph \ (y \ = \ 5-x), \ we \ have \ two \ isosceles \ right \ triangles, \ each

each with hypotenuse of 5(2).\displaystyle each \ with \ hypotenuse \ of \ 5\sqrt(2).
 

Attachments

  • def.jpg
    def.jpg
    16 KB · Views: 102
Top