Claim:
[math]D \left(
\begin{array}{l}
\sin{(b_2 - b_3)} \\
\sin{(b_3 - b_1)} \\
\sin{(b_1 - b_2)}
\end{array}
\right) =
\left(\begin{array}{c}0 \\ 0 \\ 0\end{array} \right)[/math]where D =
[math]\left(
\begin{array}{lll}
\cos\left(a_{1}-b_{1}\right) & \cos\left(a_{1}-b_{2}\right) & \cos\left(a_{1}-b_{3}\right)
\\
\cos\left(a_{2}-b_{1}\right) & \cos\left(a_{2}-b_{2}\right) & \cos\left(a_{2}-b_{3}\right)
\\
\cos\left(a_{3}-b_{1}\right) & \cos\left(a_{3}-b_{2}\right) & \cos\left(a_{3}-b_{3}\right)
\end{array}
\right)[/math]Note that this proves that [imath]\det D = 0[/imath] only if [imath]v \neq 0[/imath]. But [imath]v=0[/imath] only when [imath]b_1 = b_2 = b_3 \;mod\; 2\pi[/imath], in which case all columns of [imath]D[/imath] are identical, which also makes [imath]\det D = 0[/imath].
Let
[math]\left(
\begin{array}{lll}
\cos\left(a_{1}-b_{1}\right) & \cos\left(a_{1}-b_{2}\right) & \cos\left(a_{1}-b_{3}\right)
\\
\cos\left(a_{2}-b_{1}\right) & \cos\left(a_{2}-b_{2}\right) & \cos\left(a_{2}-b_{3}\right)
\\
\cos\left(a_{3}-b_{1}\right) & \cos\left(a_{3}-b_{2}\right) & \cos\left(a_{3}-b_{3}\right)
\end{array}
\right)
\left(
\begin{array}{l}
\sin{(b_2 - b_3)} \\
\sin{(b_3 - b_1)} \\
\sin{(b_1 - b_2)}
\end{array}
\right) =
\left(\begin{array}{c}x_1 \\ x_2 \\ x_3\end{array} \right)[/math] where
[math]x_i =
\cos\left(a_{i}-b_{1}\right) \sin{(b_2-b_3)} +
\cos\left(a_{i}-b_{2}\right) \sin{(b_3-b_1)} +
\cos\left(a_{i}-b_{3}\right) \sin{(b_1-b_2)}[/math]Using identity [imath]\;\;2\cos u \sin v = \sin (u+v) - \sin (u-v)\;\;[/imath] we get:
[math]2x_i =[/math][math]\sin \left(a_i-b_1 +b_2-b_3 \right)-
\sin \left(a_i-b_1 -b_2+b_3 \right) +[/math][math]\sin \left(a_i- b_2 +b_3-b_1 \right)-
\sin \left(a_i-b_2 -b_3+b_1 \right) +[/math][math]\sin \left(a_i-b_3 +b_1-b_2 \right)-
\sin \left(a_i-b_3 -b_1 +b_2 \right)[/math][math]=[/math][math]\sin \left(a_i - b_1 + b_2 - b_3 \right) -
\sin \left(a_i - b_3 - b_1 + b_2 \right) +[/math][math]\sin \left(a_i - b_2 + b_3 - b_1 \right) -
\sin \left(a_i - b_1 - b_2 + b_3 \right) +[/math][math]\sin \left(a_i - b_3 + b_1 - b_2 \right)-
\sin \left(a_i - b_2 - b_3 + b_1 \right) =[/math][math]0[/math]