Derivative defined as a limit

courteous

New member
Joined
Sep 21, 2008
Messages
41
Derivative is a limit of a differential quotient, that is f(a)=limh0f(a+h)f(a)h\displaystyle f'(a)=\lim_{h\to 0}{f(a+h)-f(a)\over h}

Now, why is (1f(x))=limh01h[1f(x+h)1f(x)]\displaystyle (\frac{1}{f(x)})'=\lim_{h\to0}\frac{1}{h}[\frac{1}{f(x+h)}-\frac{1}{f(x)}] :?:
 
Use the quotient rule:

Let's assume f is differentiable at x and f(x)0\displaystyle f(x)\neq 0, then 1f(x)\displaystyle \frac{1}{f(x)} is differentiable at x and

ddx[1f(x)]=f(x)(0)(1)f(x)[f(x)]2=f(x)[f(x)]2=ddx[1f(x)]\displaystyle \frac{d}{dx}\left[\frac{1}{f(x)}\right]=\frac{f(x)(0)-(1)f'(x)}{[f(x)]^{2}}=\frac{-f'(x)}{[f(x)]^{2}}=\frac{d}{dx}\left[\frac{1}{f(x)}\right]
 
What if you pretend you do not know quotient rule?

0)Preeminently, derivative is defined as a limit of a differential quotient: limh0f(a+h)f(a)h\displaystyle \lim_{h\to 0}{f(a+h)-f(a)\over h}.
1)Then, textbook proves (using above definition all the way): [(f+g)(x)]=f(x)+g(x)\displaystyle [(f+g)(x)]'=f'(x)+g'(x).
2)Then, it proves the product rule.
3)Then, it builds on previous two ("sum rule" and product rule; still using the definition) proving quotient rule: (1f(x))=limh01h[1f(x+h)1f(x)]=limh01h[f(x)f(x+h)f(x+h)f(x)]=...=f(x)f2(x)\displaystyle (\frac{1}{f(x)})'=\lim_{h\to0}\frac{1}{h}[\frac{1}{f(x+h)}-\frac{1}{f(x)}]=\lim_{h\to0}\frac{1}{h}[\frac{f(x)-f(x+h)}{f(x+h)f(x)}]=...=-\frac{f'(x)}{f^2(x)}

:!: Oblivious of quotient rule, how would you show that (1f(x))=limh01h[1f(x+h)1f(x)]=...\displaystyle (\frac{1}{f(x)})'=\lim_{h\to0}\frac{1}{h}[\frac{1}{f(x+h)}-\frac{1}{f(x)}]=... :?:
 
Or you can think in the following way:

Let

1f(x)=G(x)\displaystyle \frac{1}{f(x)} \, = \, G(x)

1f(x+h)=G(x+h)\displaystyle \frac{1}{f(x+h)} \, = \, G(x+h)

[1f(x)]=G(x)=limh0G(x+h)G(x)h=limh01f(x+h)1f(x)h\displaystyle [\frac{1}{f(x)}]' \, = \, G'(x) \, = \, \lim_{h\to 0}\frac{G(x+h) \, - \, G(x)}{h} \, = \, \lim_{h\to 0}\frac{\frac{1}{f(x+h)} \, - \, \frac{1}{f(x)}}{h}

No quotient rule needed...
 
Thank you both. I am (was) blind as bat :x . Now I'm content with underlying principles. Integrals, watch out! :) Thank you!
 
Top