Converge Conditionally?

kiddopop

New member
Joined
Sep 14, 2009
Messages
25
Does the following series converge conditionally?

The series from n=1 to infinity cos(n)/(2^n)
 
Comparison Test:  1  n < \displaystyle Comparison \ Test: \ \ 1 \ \le \ n \ < \ \infty

cos(n)2n  12n, hence cos(n)2n converges absolutely.\displaystyle \bigg|\frac{cos(n)}{2^{n}}\bigg| \ \le \ \frac{1}{2^{n}}, \ hence \ \frac{cos(n)}{2^{n}} \ converges \ absolutely.

Note: This is not an alternating series.\displaystyle Note: \ This \ is \ not \ an \ alternating \ series.
 
Top