complex integral

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,504
Solve Cez1z4 dz\displaystyle \int_{C}\frac{e^z - 1}{z^4} \ dz, where C\displaystyle C is the positively oriented unit circle z=1\displaystyle |z| = 1 as shown in the figure.

complex.png
 
Cez1z4 dz=2πi Resz=0(ez1z4)\displaystyle \int_{C}\frac{e^z - 1}{z^4} \ dz = 2\pi i \ \underset{z = 0}{\text{Res}}\left(\frac{e^z - 1}{z^4}\right)

If we can just find the residue at z=0\displaystyle z = 0 for the integrand, we are done!

In the next post, we will try to figure out a way to find the residue with the help of the Maclaurin series.

💪🧐
 
The Maclaurin expansion for ez\displaystyle e^z is:

ez=1+z+z22+z36+z424+z5120+\displaystyle e^z = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + \cdots
 
The Maclaurin expansion for ez1\displaystyle e^z - 1 is:

ez1=z+z22+z36+z424+z5120+\displaystyle e^z - 1 = z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + \cdots

💪😕
 
When we divide by z4\displaystyle z^4, we get:

ez1z4=1z3+12z2+16z+124+z120+\displaystyle \frac{e^z - 1}{z^4} = \frac{1}{z^3} + \frac{1}{2z^2} + \frac{1}{6z} + \frac{1}{24} + \frac{z}{120} + \cdots
 
This Laurent series tells us that the residue at z=0\displaystyle z = 0 is:

16\displaystyle \frac{1}{6}

We are almost there💪😍
 
Here are the final touches.

Cez1z4 dz=2πi Resz=0(ez1z4)=2πi 16=πi3\displaystyle \int_{C}\frac{e^z - 1}{z^4} \ dz = 2\pi i \ \underset{z = 0}{\text{Res}}\left(\frac{e^z - 1}{z^4}\right) = 2\pi i \ \frac{1}{6} = \frac{\pi i}{3}
 
Top