Solve. \large \int_C \pi e^{\pi \overline{z}} \ dz where C is the path that goes from 1 + i to i.
logistic_guy Senior Member Joined Apr 17, 2024 Messages 1,617 Apr 4, 2025 #1 Solve. ∫Cπeπz‾ dz\displaystyle \large \int_C \pi e^{\pi \overline{z}} \ dz∫Cπeπz dz where C\displaystyle CC is the path that goes from 1+i\displaystyle 1 + i1+i to i\displaystyle ii.
Solve. ∫Cπeπz‾ dz\displaystyle \large \int_C \pi e^{\pi \overline{z}} \ dz∫Cπeπz dz where C\displaystyle CC is the path that goes from 1+i\displaystyle 1 + i1+i to i\displaystyle ii.
logistic_guy Senior Member Joined Apr 17, 2024 Messages 1,617 Apr 4, 2025 #2 We start with: z=x+iy\displaystyle z = x + iyz=x+iy z‾=x−iy\displaystyle \overline{z} = x - iyz=x−iy By looking at the path, we find that y=1\displaystyle y = 1y=1, then we have: z=x+i\displaystyle z = x + iz=x+i z‾=x−i\displaystyle \overline{z} = x - iz=x−i This gives us the integral: ∫10πeπ(x−i) dx\displaystyle \int_{1}^{0} \pi e^{\pi(x - i)} \ dx∫10πeπ(x−i) dx
We start with: z=x+iy\displaystyle z = x + iyz=x+iy z‾=x−iy\displaystyle \overline{z} = x - iyz=x−iy By looking at the path, we find that y=1\displaystyle y = 1y=1, then we have: z=x+i\displaystyle z = x + iz=x+i z‾=x−i\displaystyle \overline{z} = x - iz=x−i This gives us the integral: ∫10πeπ(x−i) dx\displaystyle \int_{1}^{0} \pi e^{\pi(x - i)} \ dx∫10πeπ(x−i) dx
logistic_guy Senior Member Joined Apr 17, 2024 Messages 1,617 Apr 4, 2025 #3 logistic_guy said: ∫10πeπ(x−i) dx\displaystyle \int_{1}^{0} \pi e^{\pi(x - i)} \ dx∫10πeπ(x−i) dx Click to expand... Let's solve it. ∫10πeπ(x−i) dx=πe−iπ∫10eπx dx=e−iπeπx∣10=e−iπ(1−eπ)\displaystyle \int_{1}^{0} \pi e^{\pi(x - i)} \ dx = \pi e^{-i\pi}\int_{1}^{0}e^{\pi x} \ dx = e^{-i\pi}e^{\pi x}\bigg |_{1}^{0} = e^{-i\pi}(1 - e^{\pi})∫10πeπ(x−i) dx=πe−iπ∫10eπx dx=e−iπeπx∣∣∣∣∣10=e−iπ(1−eπ) =(cosπ−isinπ)(1−eπ)=(−1)(1−eπ)=eπ−1\displaystyle = (\cos \pi - i\sin \pi)(1 - e^{\pi}) = (-1)(1 - e^{\pi}) = e^{\pi} - 1=(cosπ−isinπ)(1−eπ)=(−1)(1−eπ)=eπ−1
logistic_guy said: ∫10πeπ(x−i) dx\displaystyle \int_{1}^{0} \pi e^{\pi(x - i)} \ dx∫10πeπ(x−i) dx Click to expand... Let's solve it. ∫10πeπ(x−i) dx=πe−iπ∫10eπx dx=e−iπeπx∣10=e−iπ(1−eπ)\displaystyle \int_{1}^{0} \pi e^{\pi(x - i)} \ dx = \pi e^{-i\pi}\int_{1}^{0}e^{\pi x} \ dx = e^{-i\pi}e^{\pi x}\bigg |_{1}^{0} = e^{-i\pi}(1 - e^{\pi})∫10πeπ(x−i) dx=πe−iπ∫10eπx dx=e−iπeπx∣∣∣∣∣10=e−iπ(1−eπ) =(cosπ−isinπ)(1−eπ)=(−1)(1−eπ)=eπ−1\displaystyle = (\cos \pi - i\sin \pi)(1 - e^{\pi}) = (-1)(1 - e^{\pi}) = e^{\pi} - 1=(cosπ−isinπ)(1−eπ)=(−1)(1−eπ)=eπ−1