complex analysis is life - 3

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,617
Solve.

Cπeπz dz\displaystyle \large \int_C \pi e^{\pi \overline{z}} \ dz

where C\displaystyle C is the path that goes from 1+i\displaystyle 1 + i to i\displaystyle i.
 
We start with:

z=x+iy\displaystyle z = x + iy
z=xiy\displaystyle \overline{z} = x - iy

By looking at the path, we find that y=1\displaystyle y = 1, then we have:

z=x+i\displaystyle z = x + i
z=xi\displaystyle \overline{z} = x - i

This gives us the integral:

10πeπ(xi) dx\displaystyle \int_{1}^{0} \pi e^{\pi(x - i)} \ dx
 
10πeπ(xi) dx\displaystyle \int_{1}^{0} \pi e^{\pi(x - i)} \ dx
Let's solve it.

10πeπ(xi) dx=πeiπ10eπx dx=eiπeπx10=eiπ(1eπ)\displaystyle \int_{1}^{0} \pi e^{\pi(x - i)} \ dx = \pi e^{-i\pi}\int_{1}^{0}e^{\pi x} \ dx = e^{-i\pi}e^{\pi x}\bigg |_{1}^{0} = e^{-i\pi}(1 - e^{\pi})

=(cosπisinπ)(1eπ)=(1)(1eπ)=eπ1\displaystyle = (\cos \pi - i\sin \pi)(1 - e^{\pi}) = (-1)(1 - e^{\pi}) = e^{\pi} - 1
 
Top