[math]\left( \dfrac{a-1}{a+1} \right) * \left( \dfrac{b-1}{b+1} \right)\\
= \dfrac{ \left(\dfrac{a-1}{a+1}\right) + \left(\dfrac{b-1}{b+1}\right) }{ 1 + \left(\dfrac{a-1}{a+1}\right) \cdot \left(\dfrac{b-1}{b+1}\right) }\text{ by the definition of *}\\
= \dfrac{ (a-1)(b+1) + (b-1)(a+1) }{ (a+1)(b+1) + (a-1)(b-1) }\\
= \dfrac{2ab-2}{2ab + 2}\\
= \dfrac{ab - 1}{ab + 1}[/math]
This extends to any number of terms, since the inputs and outputs are in the
same format of (x-1)/(x+1) where x is any number. And because...
[math]y=\dfrac{x-1}{x+1} \implies x=\dfrac{1 + y}{1 - y}[/math]
...then the answer for 6 terms would be...
[math]a*b*c*d*e*f=\dfrac{c_2-1}{c_2+1}\\
\text{where }c_2=\dfrac{(a+1)(b+1)(c+1)(d+1)(e+1)(f+1)}{(a-1)(b-1)(c-1)(d-1)(e-1)(f-1)}[/math]
Extending this for the original question, the answer would be...
[math]\dfrac{c-1}{c+1}\\
\text{where }c=\dfrac{\cancel{3} \times \cancel{4} \times \cancel{5}\times \cancel{6}\times \cdots \times \cancel{2019}\times \cancel{2020} \times 2021\times 2022}{1\times 2\times\cancel{3}\times \cancel{4} \times \cdots \times \cancel{2017}\times \cancel{2018}\times \cancel{2019}\times \cancel{2020}} = \dfrac{2021\times 2022}{2}=2043231[/math][math]\text{therefore the answer is}\dfrac{c-1}{c+1} = \dfrac{1021615}{1021616} \text{ in lowest terms}[/math]This is slightly different to BBB's answer in post#13
(I still suspect that BBB made a typo
)