Here is what I have done. I'm not sure whether this pleases you. It's a little bit complicated.
1) I defined the function
[math] \displaystyle{P(x)=\prod_{k=1}^{[x]}\left(1+\dfrac{1}{k/2}\right)^{k/2}} \;.[/math]
2) Your claim is thus about [imath] P(14) [/imath] and it says [imath] P(14)\sim\pi\left(e^{15}\right)-\pi\left(e^{14}\right) [/imath] where [imath] \pi [/imath] is the prime counting function, i.e. in other words [math] P(14)\sim 141738. [/math]
3) You wrote, and I corrected two typos and added the more accurate approximation with the constant [imath] 1.08366 [/imath] in the denominator:
The amount of primes between [imath]e^{14}[/imath] and [imath]e^{15}[/imath] is [imath]141738.[/imath] Using [imath]x/\log(x)[/imath] we get [imath]132034.[/imath] [imath]P(14)=135839.07337861.[/imath] Using [imath]x/(\log x -1.08366)[/imath] we get [imath]141798.[/imath] For further steps, we will use the logarithm of [imath]P(x)[/imath] because sums are easier to handle.
4) Comment: the approximation with [imath] 1.08366 [/imath] is hard to beat. It has only an error of [imath] 60 [/imath] or [imath] 0.04 \% [/imath]
5) Anyway. Here is what I have done with [imath] L(x)=\log P(x). [/imath]
[math]\begin{array}{lll}
L(x)&=\log(P(x))=\displaystyle{ \sum_{k=1}^{[x]}\frac{k}{2}\log\left(1+\dfrac{2}{k}\right) }\\[18pt]
&=\displaystyle{ \dfrac{\log(3)}{2}+\log(2)+\sum_{k=3}^{[x]}\frac{k}{2}\log\left(1+\dfrac{2}{k}\right) } \\[18pt]
&=\displaystyle{ \dfrac{\log(3)}{2} +\log(2)+\sum_{k=3}^{[x]}\frac{k}{2}\sum_{n=1}^\infty (-1)^{n+1}\dfrac{2^n}{nk^n} } \\[18pt]
&=\displaystyle{ \dfrac{\log(3)}{2}+\log(2)+ \sum_{k=3}^{[x]}\left(1+\sum_{n=2}^\infty(-1)^{n+1}\dfrac{2^{n-1}}{nk^{n-1}}\right) } \\[18pt]
&=\displaystyle{ \dfrac{\log(3)}{2}+\log(2)+([x]-2)+\sum_{k=3}^{[x]}\left(-\dfrac{1}{k}+\sum_{n=3}^\infty(-1)^{n+1}\dfrac{2^{n-1}}{nk^{n-1}}\right) } \\[18pt]
&=\displaystyle{ \dfrac{\log(3)}{2}+\log(2)+([x]-2)-\sum_{k=3}^{[x]}\dfrac{1}{k}+\sum_{k=3}^{[x]}\sum_{n=3}^\infty(-1)^{n+1}\dfrac{2^{n-1}}{nk^{n-1}} } \\[18pt]
&=\displaystyle{ \dfrac{\log(3)}{2}+\log(2)+[x]-\dfrac{1}{2}- \sum_{k=1}^{[x]}\dfrac{1}{k}+\sum_{n=3}^\infty (-1)^{n-1}\dfrac{2^{n-1}}{n}\sum_{k=3}^{[x]}\dfrac{1}{k^{n-1}} }
\end{array}[/math]
We have for the harmonic series the formulas
[math]\begin{array}{lll}
\displaystyle{ \sum_{k=1}^{[x]}\dfrac{1}{k} } &=H_{[x]}= \displaystyle{ \int_0^1\dfrac{1-t^{[x]}}{1-t}\,dt } \\[18pt]
&=\log [x] +\gamma + \dfrac{1}{2[x]}+\ldots \\[18pt]
&\ldots -\dfrac{1}{12[x]^2}+\dfrac{1}{120[x]^4}-\dfrac{1}{252[x]^6}+\dfrac{1}{240[x]^8}-\dfrac{1}{132[x]^{10}}+\mathcal{O}\left(\dfrac{1}{[x]^{12}} \right)
\end{array}[/math]
and for the Hurwitz zeta-function
[math]
\zeta(s,q)=\sum_{k=0}^\infty \dfrac{1}{(q+k)^{s}}=\dfrac{1}{\Gamma(s)}\int_0^\infty \dfrac{t^{s-1}e^{-qt}}{1-e^{-t}}\,dt\, , \,q>0\, , \,s>1
[/math]
the formulas
[math]\begin{array}{lll}
\displaystyle{ \sum_{k=3}^{[x]}\dfrac{1}{k^{n-1}} } &=\displaystyle{ \sum_{k=0}^{[x]-3}\dfrac{1}{(3+k)^{n-1}}=\sum_{k=0}^{\infty }\dfrac{1}{(3+k)^{n-1}}-\sum_{k={[x]-2}}^{\infty }\dfrac{1}{(3+k)^{n-1}} } \\[18pt]
&=\displaystyle{ \zeta(n-1,3)-\sum_{m=0}^\infty \dfrac{1}{([x]+1+m)^{n-1}}=\zeta(n-1,3)-\zeta(n-1,[x]+1) } \\[18pt]
&=\displaystyle{ \dfrac{1}{(n-2)!}\int_0^\infty \dfrac{t^{n-2}\left(e^{-3t}-e^{-([x]+1)t}\right)}{1-e^{-t}} } \,dt
\end{array}[/math]
That makes in total
[math]\begin{array}{lll}
L(x)&=\displaystyle{ \dfrac{\log(3)}{2}+\log(2)+[x]-\dfrac{1}{2}-\int_0^1\dfrac{1-t^{[x]}}{1-t}\,dt +\ldots } \\[18pt]
&\displaystyle{ \ldots+\int_0^\infty \dfrac{e^{-3t}-e^{-([x]+1)t}}{1-e^{-t}}\left(\sum_{n=3}^\infty (-1)^{n-1}\dfrac{2^{n-1}}{n(n-2)!} t^{n-2}\right) \,dt }
\end{array}[/math]
Now (using WA) we get
[math]
\displaystyle{ \sum_{n=3}^\infty (-1)^{n-1}\dfrac{2^{n-1}}{n(n-2)!} t^{n-2}=
\dfrac{ 2t^2 - 1 + 2te^{-2 t} + e^{-2 t}}{2 t^2} }
[/math]
and thus
[math]\begin{array}{lll}
I_{[x]}(t)&= \displaystyle{ \dfrac{e^{-3t}-e^{-([x]+1)t}}{1-e^{-t}}\left(\sum_{n=3}^\infty (-1)^{n-1}\dfrac{2^{n-1}}{n(n-2)!} t^{n-2}\right) \,dt } \\[18pt]
&=\displaystyle{ \dfrac{e^{-3t}-e^{-([x]+1)t}}{1-e^{-t}}\ \cdot\ \dfrac{ 2t^2 - 1 + 2te^{-2 t} + e^{-2 t}}{2 t^2} }
\end{array}[/math]
and finally
[math]\begin{array}{lll}
L(x)&=\displaystyle{ \log\left(\dfrac{2\sqrt{3}}{\sqrt{e}}\right)+[x]-H_{[x]}+\int_0^\infty I_{[x]}(t)\,dt\;. }
\end{array}[/math]
Let us test our result with [imath] x=14. [/imath]
[math]\begin{array}{lll}
L(14)&=\log P(14)=\log (135839.07337861) \approx 11.81922618\\[18pt]
H(14)&=\dfrac{1171733}{360360}\\[18pt]
\displaystyle{ \int_0^\infty I_{14}(t)\, dt } &\approx 0.328335\\[18pt]
L(14)&\approx 13.5+\log(2\sqrt{3})-\dfrac{1171733}{360360}+0.328335 \approx 11.819226
\end{array}[/math]
There is a small error caused by the approximation of the integral by WA.
6) At least you have a nice formula and you could test values for [imath] x [/imath] other than [imath] 14. [/imath] I think they get better with increasing [imath] x [/imath] but not as good as Legendre's approximation.
7) So much to: "within minutes". Nice constant by the way.
Here is the WA link for the integral:
Wolfram|Alpha brings expert-level knowledge and capabilities to the broadest possible range of people—spanning all professions and education levels.
www.wolframalpha.com
That should save you a lot of typing. You only have to replace the [imath] 14 [/imath] by another number for [imath] x. [/imath]