????

BigGlenntheHeavy

Senior Member
Joined
Mar 8, 2009
Messages
1,577
Solve: 0ln(10)ex101lnydy dx\displaystyle Solve: \ \int_{0}^{ln(10)}\int_{e^{x}}^{10}\frac{1}{ln|y|}dy \ dx
 
I see what is going on.No need for all that complicated Exponential log stuff.

Use ddxh(x)g(x)f(t)dt=f(g(x))g(x)f(h(x))h(x)\displaystyle \frac{d}{dx}\int_{h(x)}^{g(x)}f(t)dt=f(g(x))g'(x)-f(h(x))h'(x) and you will get 9.

The fundamental theorem of calcarooney.
 
galactus, you have to switch the order of integration, to wit:\displaystyle galactus, \ you \ have \ to \ switch \ the \ order \ of \ integration, \ to \ wit:

0ln(10)ex101lnydy dx = 1100lny1lnydx dy = 9.\displaystyle \int_{0}^{ln(10)}\int_{e^{x}}^{10}\frac{1}{ln|y|}dy \ dx \ = \ \int_{1}^{10}\int_{0}^{ln|y|}\frac{1}{ln|y|}dx \ dy \ = \ 9.

Your answer is correct, usually people come up with the answer of 10.\displaystyle Your \ answer \ is \ correct, \ usually \ people \ come \ up \ with \ the \ answer \ of \ 10.

Good show.\displaystyle Good \ show.
 
Top