x^(2) * e^(-x^2) (improper integrals)

TsAmE

Junior Member
Joined
Aug 28, 2010
Messages
55
Show that 0x2ex2dx=120ex2dx.\displaystyle \int_{0}^{\infty}x^{2}e^{-x^{2}}dx = \frac{1}{2}\int_{0}^{\infty}e^{-x^{2}}dx.

I used substitution:

t=x2\displaystyle t = x^{2}

dx=dt2x\displaystyle dx = \frac{dt}{2x}

120tetdx\displaystyle \frac{1}{2}\int_{0}^{\infty}\sqrt{t}e^{-t}dx

Then tried using integration by parts but then I didnt get an answer and got stuck.
 
TsAmE said:
Show that 0x2ex2dx=120ex2dx.\displaystyle \int_{0}^{\infty}x^{2}e^{-x^{2}}dx = \frac{1}{2}\int_{0}^{\infty}e^{-x^{2}}dx.

I used substitution:

t=x2\displaystyle t = x^{2}

dx=dt2x\displaystyle dx = \frac{dt}{2x}

120tetdx\displaystyle \frac{1}{2}\int_{0}^{\infty}\sqrt{t}e^{-t}dx

Then tried using integration by parts but then I didnt get an answer and got stuck.

0x2ex2dx = 120x2xex2dx = 120xd[ex2] = 12[xex2]0+120ex2dx\displaystyle \int_{0}^{\infty}x^{2}e^{-x^{2}}dx \ = \ \frac{1}{2}\int_{0}^{\infty}x\cdot 2x e^{-x^{2}}dx \ = \ -\frac{1}{2}\int_{0}^{\infty}x\cdot d[e^{-x^{2}}] \ = \ -\frac{1}{2}\left[ x\cdot e^{-x^2}\right ]_0^{\infty} + \frac{1}{2}\int_{0}^{\infty}e^{-x^{2}}dx
 
Subhotosh Khan said:
0x2ex2dx = 120x2xex2dx = 120xd[ex2] = 12[xex2]0+120ex2dx\displaystyle \int_{0}^{\infty}x^{2}e^{-x^{2}}dx \ = \ \frac{1}{2}\int_{0}^{\infty}x\cdot 2x e^{-x^{2}}dx \ = \ -\frac{1}{2}\int_{0}^{\infty}x\cdot d[e^{-x^{2}}] \ = \ -\frac{1}{2}\left[ x\cdot e^{-x^2}\right ]_0^{\infty} + \frac{1}{2}\int_{0}^{\infty}e^{-x^{2}}dx
Where did the d come from in the 3rd equation?
 
Subhotosh Khan said:
0x2ex2dx = 120x2xex2dx =\displaystyle \int_{0}^{\infty}x^{2}e^{-x^{2}}dx \ = \ \frac{1}{2}\int_{0}^{\infty}x\cdot 2x e^{-x^{2}}dx \ =
Another way

Integration by parts

u = x

v=ex2\displaystyle v = e^{-x^2}

dv=2xex2dx\displaystyle dv = -2xe^{-x^2}dx

 = 12[xex2]0+120ex2dx\displaystyle \ = \ -\frac{1}{2}\left[ x\cdot e^{-x^2}\right ]_0^{\infty} + \frac{1}{2}\int_{0}^{\infty}e^{-x^{2}}dx
 
Top