why is this integral zero

tommycashmoney

New member
Joined
Dec 30, 2020
Messages
9
Screenshot 2021-02-14 at 16.55.51.png
i don't understand why this integral is zero Screenshot 2021-02-14 at 16.59.51.png


i understand that if w = 0, the value is zero, but if w = infinite, i can't see how it makes zero e^-2inifnite * e^i(T)(infinite)
 
In the numerator you have [MATH]\omega e^{-i\omega t} e^{-2\omega}[/MATH]. Note that [MATH]|e^{i\theta}| =1[/MATH] for any [MATH]\theta[/MATH].
 
In the numerator you have [MATH]\omega e^{-i\omega t} e^{-2\omega}[/MATH]. Note that [MATH]|e^{i\theta}| =1[/MATH] for any [MATH]\theta[/MATH].
Okay, ans why do we consider only the absolute value? And even if it is 1, how does it make zero in the end?
 
Okay, ans why do we consider only the absolute value? And even if it is 1, how does it make zero in the end?

in this case || does not indicate absolute value - it indicates "magnitude" (which is always "positive" like || - but different consequences).

\(\displaystyle \left| e^{it}\right| \ = \ \left| cos(t) \ + \ i \cdot sin(t) \right| \ \ = 1\)
 
Okay, ans why do we consider only the absolute value? And even if it is 1, how does it make zero in the end?
With [MATH]t> 0[/MATH], what happens to [MATH]\omega e^{-\omega t}[/MATH] as [MATH]\omega \to \infty[/MATH]?
 
Top