Which is larger? - - - - my challenge problem

lookagain

Elite Member
Joined
Aug 22, 2010
Messages
3,255
.
.

Without using a calculator or computer, show all of the steps in your chosen method to determine which side has the larger value:


7 + 133    versus    5\displaystyle \sqrt{7} \ + \ \sqrt[3]{13} \ \ \ \ versus \ \ \ \ 5
 
.
.

Without using a calculator or computer, show all of the steps in your chosen method to determine which side has the larger value:


7 + 133    versus    5\displaystyle \sqrt{7} \ + \ \sqrt[3]{13} \ \ \ \ versus \ \ \ \ 5

I'm sure there's a clever solution to this, but I went through the first way I thought of. All steps can be done by hand (but would take a long time).

Start with [1.058301]2/[0.4]2=1.120001006601/0.16\displaystyle [1.058301]^2/[0.4]^2 = 1.120001006601/0.16, which is equal to 7.000006+R1\displaystyle 7.000006+R_1 for R1>0\displaystyle R_1>0.

So 7<1.058301/0.4=2.6457524\displaystyle \sqrt{7} < 1.058301/0.4 = 2.6457524

Similarly, 1.1756673443/0.53=13.000000004+R2\displaystyle 1.175667344^3/0.5^3 = 13.000000004+R_2 where R2>0\displaystyle R_2>0.

So 133<1.175667344/0.5=2.351334688\displaystyle \sqrt[3]{13} < 1.175667344/0.5 = 2.351334688

7+133<2.6457524+2.351334688<2.646+2.352=4.998<5\displaystyle \sqrt{7} + \sqrt[3]{13} < 2.6457524+2.351334688 < 2.646+2.352 = 4.998 < 5
 
.
.

Without using a calculator or computer, show all of the steps in your chosen method to determine which side has the larger value:


7 + 133    versus    5\displaystyle \sqrt{7} \ + \ \sqrt[3]{13} \ \ \ \ versus \ \ \ \ 5


Let's see if I have enough preliminary information:


1)   \displaystyle \ \ For a and b belonging to the set of real numbers, and 0 < a < b,

if  a<b,  then  a2<b2,  and  also  a3<b3.\displaystyle if \ \ a < b, \ \ then \ \ a^2 < b^2, \ \ and \ \ also \ \ a^3 < b^3.


2)   \displaystyle \ \ (ab)3 = a33a2b+3ab2b3\displaystyle (a - b)^3 \ = \ a^3 - 3a^2b + 3ab^2 - b^3


(I am using "vs." for "versus.")


-------------------------------------------------------------------------


7 + 133    vs.    5\displaystyle \sqrt{7} \ + \ \sqrt[3]{13} \ \ \ \ vs. \ \ \ \ 5

133    vs.    57\displaystyle \sqrt[3]{13} \ \ \ \ vs. \ \ \ \ 5 - \sqrt{7}

(133)3    vs.    (57)3\displaystyle (\sqrt[3]{13})^3 \ \ \ \ vs. \ \ \ \ (5 - \sqrt{7})^3

13    vs.    (5)3  3(5)2(7) + 3(5)(7)2  (7)3\displaystyle 13 \ \ \ \ vs. \ \ \ \ (5)^3 \ - \ 3(5)^2(\sqrt{7}) \ + \ 3(5)(\sqrt{7})^2 \ - \ (\sqrt{7})^3

13    vs.    125  757 + 105  77\displaystyle 13 \ \ \ \ vs. \ \ \ \ 125 \ - \ 75\sqrt{7} \ + \ 105 \ - \ 7\sqrt{7}

13    vs.    230  827\displaystyle 13 \ \ \ \ vs. \ \ \ \ 230 \ - \ 82\sqrt{7}

827    vs.    217\displaystyle 82\sqrt{7} \ \ \ \ vs. \ \ \ \ 217

(827)2    vs.    (217)2\displaystyle (82\sqrt{7})^2 \ \ \ \ vs. \ \ \ \ (217)^2

(82)2(7)    vs.    (217)2\displaystyle (82)^2(7) \ \ \ \ vs. \ \ \ \ (217)^2

47,068    vs.    47,089\displaystyle 47,068 \ \ \ \ vs. \ \ \ \ 47,089



Because the quantity on the right-hand side is greater than the quantity on the
left-hand side, then we conclude that:


5 > 7 + 133\displaystyle 5 \ > \ \sqrt{7} \ + \ \sqrt[3]{13}
 
Last edited:
Top