Using the zeroes, we may write:
[MATH]f(x)=(x-1)\left(x+\frac{1}{2}-\frac{\sqrt{11}i}{2}\right)\left(x+\frac{1}{2}+\frac{\sqrt{11}i}{2}\right)[/MATH]
Next, we can factor 1/2 from the two rightmost factors:
[MATH]f(x)=(x-1)\frac{1}{2}\left(2x+1-\sqrt{11}i\right)\frac{1}{2}\left(2x+1+\sqrt{11}i\right)[/MATH]
The commutative property of multiplication allows us to bring those two 1/2's up front:
[MATH]f(x)=\frac{1}{2}\cdot\frac{1}{2}(x-1)\left(2x+1-\sqrt{11}i\right)\left(2x+1+\sqrt{11}i\right)[/MATH]
And finally, we may multiply them together to get:
[MATH]f(x)=\frac{1}{4}(x-1)\left(2x+1-\sqrt{11}i\right)\left(2x+1+\sqrt{11}i\right)[/MATH]