What is the Simplifies form of...

Multiply the top and bottom of the big fraction by (m1)\displaystyle (m-1).
 
Hello, nwelter!

Simplify:   m+nm1+nm+nm11\displaystyle \displaystyle{\text{Simplify: }\;\frac{\frac{m+n}{m-1}+n} {\frac{m+n}{m-1} -1} }

Multiply by m1m1 ⁣:(m1)[m+nm1+n](m1)[m+nm11]  =  (m+n)+n(m1)(m+n)(m1)  =  m+n+mnnm+nm+1\displaystyle \displaystyle{\text{Multiply by }\frac{m-1}{m-1}\!:\quad\frac{(m-1)\left[\frac{m+n}{m-1} + n\right]} {(m-1)\left[\frac{m+n}{m-1} - 1\right]} \;=\;\frac{(m+n) + n(m-1)}{(m+n) - (m-1)} \;=\;\frac{m+ n + mn - n}{m + n - m + 1} }

. . . . . . . . . . =  mn+mn+1  =  m(n+1)n+1  =  m\displaystyle = \;\frac{mn + m}{n + 1} \;=\;\frac{m(n+1)}{n+1} \;=\; m

 
f(x) = m+nm1+nm+nm11 = m+n+mnnm1m+nm+1m1\displaystyle f(x) \ = \ \frac{\frac{m+n}{m-1}+n}{\frac{m+n}{m-1}-1} \ = \ \frac{\frac{m+n+mn-n}{m-1}}{\frac{m+n-m+1}{m-1}}

= m(n+1)m1m1n+1 = m(n+1)n+1 = m\displaystyle = \ \frac{m(n+1)}{m-1}*\frac{m-1}{n+1} \ = \ \frac{m(n+1)}{n+1} \ = \ m

Restrictions: m 1, n 1.\displaystyle Restrictions: \ m\not= \ 1, \ n\not= \ -1.
 
Top