((m+n)/(m-1))+n ALL divided by ((m+n)/m-1))-1 please help :D
N nwelter New member Joined Aug 31, 2009 Messages 1 Aug 31, 2009 #1 ((m+n)/(m-1))+n ALL divided by ((m+n)/m-1))-1 please help
D daon Senior Member Joined Jan 27, 2006 Messages 1,284 Aug 31, 2009 #2 Multiply the top and bottom of the big fraction by \(\displaystyle (m-1)\).
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Aug 31, 2009 #3 Hello, nwelter! \(\displaystyle \displaystyle{\text{Simplify: }\;\frac{\frac{m+n}{m-1}+n} {\frac{m+n}{m-1} -1} }\) Click to expand... \(\displaystyle \displaystyle{\text{Multiply by }\frac{m-1}{m-1}\!:\quad\frac{(m-1)\left[\frac{m+n}{m-1} + n\right]} {(m-1)\left[\frac{m+n}{m-1} - 1\right]} \;=\;\frac{(m+n) + n(m-1)}{(m+n) - (m-1)} \;=\;\frac{m+ n + mn - n}{m + n - m + 1} }\) . . . . . . . . . . \(\displaystyle = \;\frac{mn + m}{n + 1} \;=\;\frac{m(n+1)}{n+1} \;=\; m\)
Hello, nwelter! \(\displaystyle \displaystyle{\text{Simplify: }\;\frac{\frac{m+n}{m-1}+n} {\frac{m+n}{m-1} -1} }\) Click to expand... \(\displaystyle \displaystyle{\text{Multiply by }\frac{m-1}{m-1}\!:\quad\frac{(m-1)\left[\frac{m+n}{m-1} + n\right]} {(m-1)\left[\frac{m+n}{m-1} - 1\right]} \;=\;\frac{(m+n) + n(m-1)}{(m+n) - (m-1)} \;=\;\frac{m+ n + mn - n}{m + n - m + 1} }\) . . . . . . . . . . \(\displaystyle = \;\frac{mn + m}{n + 1} \;=\;\frac{m(n+1)}{n+1} \;=\; m\)
B BigGlenntheHeavy Senior Member Joined Mar 8, 2009 Messages 1,577 Sep 1, 2009 #4 \(\displaystyle f(x) \ = \ \frac{\frac{m+n}{m-1}+n}{\frac{m+n}{m-1}-1} \ = \ \frac{\frac{m+n+mn-n}{m-1}}{\frac{m+n-m+1}{m-1}}\) \(\displaystyle = \ \frac{m(n+1)}{m-1}*\frac{m-1}{n+1} \ = \ \frac{m(n+1)}{n+1} \ = \ m\) \(\displaystyle Restrictions: \ m\not= \ 1, \ n\not= \ -1.\)
\(\displaystyle f(x) \ = \ \frac{\frac{m+n}{m-1}+n}{\frac{m+n}{m-1}-1} \ = \ \frac{\frac{m+n+mn-n}{m-1}}{\frac{m+n-m+1}{m-1}}\) \(\displaystyle = \ \frac{m(n+1)}{m-1}*\frac{m-1}{n+1} \ = \ \frac{m(n+1)}{n+1} \ = \ m\) \(\displaystyle Restrictions: \ m\not= \ 1, \ n\not= \ -1.\)