What is the Simplifies form of...

Multiply the top and bottom of the big fraction by \(\displaystyle (m-1)\).
 
Hello, nwelter!

\(\displaystyle \displaystyle{\text{Simplify: }\;\frac{\frac{m+n}{m-1}+n} {\frac{m+n}{m-1} -1} }\)

\(\displaystyle \displaystyle{\text{Multiply by }\frac{m-1}{m-1}\!:\quad\frac{(m-1)\left[\frac{m+n}{m-1} + n\right]} {(m-1)\left[\frac{m+n}{m-1} - 1\right]} \;=\;\frac{(m+n) + n(m-1)}{(m+n) - (m-1)} \;=\;\frac{m+ n + mn - n}{m + n - m + 1} }\)

. . . . . . . . . . \(\displaystyle = \;\frac{mn + m}{n + 1} \;=\;\frac{m(n+1)}{n+1} \;=\; m\)

 
\(\displaystyle f(x) \ = \ \frac{\frac{m+n}{m-1}+n}{\frac{m+n}{m-1}-1} \ = \ \frac{\frac{m+n+mn-n}{m-1}}{\frac{m+n-m+1}{m-1}}\)

\(\displaystyle = \ \frac{m(n+1)}{m-1}*\frac{m-1}{n+1} \ = \ \frac{m(n+1)}{n+1} \ = \ m\)

\(\displaystyle Restrictions: \ m\not= \ 1, \ n\not= \ -1.\)
 
Top