What is the integral of (x^3) / [Sqrt(1+4x^2)]?
C chadsgirl New member Joined Apr 2, 2007 Messages 3 May 1, 2007 #1 What is the integral of (x^3) / [Sqrt(1+4x^2)]?
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,216 May 1, 2007 #2 Let \(\displaystyle \L\\x=\frac{1}{2}tan({\theta}) \;\ dx=\frac{1}{2}sec^{2}({\theta})d{\theta}\)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 May 1, 2007 #3 Hello, chadsgirl! This can also be done by parts . . . \(\displaystyle \L\int \frac{x^3}{\sqrt{1\,+\,4x^2}}\,dx\) Click to expand... \(\displaystyle \begin{array}{ccccccc}u & \,=\, & x^2 & \;\;\; &dv &\,=\, & x(1\,+\,4x^2)^{-\frac{1}{2}}\,dx \\ du & = & 2x\,dx & \;\;\; & v & = & \frac{1}{4}(1\,+\,4x^2)^{\frac{1}{2}} \end{array}\) And we have: \(\displaystyle \L\:\frac{1}{4}x^2(1\,+\,4x^2)^{\frac{1}{2}}\,-\,\frac{1}{2}\int x(1\,+\,4x^2)^{\frac{1}{2}}dx\) . . . \(\displaystyle \L=\;\frac{1}{4}x^2(1\,+\,4x^2)^{\frac{1}{2}}\,-\,\frac{1}{24}(1\,+\,4x^2)^{\frac{3}{2}}\,+\,C\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ This can be simplified . . . Factor: \(\displaystyle \L\:\frac{1}{24}(1\,+\,4x^2)^{\frac{1}{2}}\,\cdot\,\left[6x^2\,-\,(1\,+\,4x^2)\right]\,+\,C\) . . . \(\displaystyle \L=\;\frac{1}{24}(1\,+\,4x^2)^{\frac{1}{2}}(2x^2\,-\,1)\,+\,C\)
Hello, chadsgirl! This can also be done by parts . . . \(\displaystyle \L\int \frac{x^3}{\sqrt{1\,+\,4x^2}}\,dx\) Click to expand... \(\displaystyle \begin{array}{ccccccc}u & \,=\, & x^2 & \;\;\; &dv &\,=\, & x(1\,+\,4x^2)^{-\frac{1}{2}}\,dx \\ du & = & 2x\,dx & \;\;\; & v & = & \frac{1}{4}(1\,+\,4x^2)^{\frac{1}{2}} \end{array}\) And we have: \(\displaystyle \L\:\frac{1}{4}x^2(1\,+\,4x^2)^{\frac{1}{2}}\,-\,\frac{1}{2}\int x(1\,+\,4x^2)^{\frac{1}{2}}dx\) . . . \(\displaystyle \L=\;\frac{1}{4}x^2(1\,+\,4x^2)^{\frac{1}{2}}\,-\,\frac{1}{24}(1\,+\,4x^2)^{\frac{3}{2}}\,+\,C\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ This can be simplified . . . Factor: \(\displaystyle \L\:\frac{1}{24}(1\,+\,4x^2)^{\frac{1}{2}}\,\cdot\,\left[6x^2\,-\,(1\,+\,4x^2)\right]\,+\,C\) . . . \(\displaystyle \L=\;\frac{1}{24}(1\,+\,4x^2)^{\frac{1}{2}}(2x^2\,-\,1)\,+\,C\)
skeeter Elite Member Joined Dec 15, 2005 Messages 3,216 May 2, 2007 #4 \(\displaystyle \L u = 1+4x^2\) \(\displaystyle \L x^2 = \frac{u-1}{4}\) \(\displaystyle \L du = 8x dx\) \(\displaystyle \L \int \frac{x^3}{\sqrt{1+4x^2}}dx =\) \(\displaystyle \L \frac{1}{8} \int x^2 \cdot \frac{8x}{\sqrt{1+4x^2}} dx\) substitute ... \(\displaystyle \L \frac{1}{8} \int \frac{u-1}{4} \cdot \frac{1}{\sqrt{u}} du =\) \(\displaystyle \L \frac{1}{32} \int \sqrt{u} - \frac{1}{\sqrt{u}} du\) \(\displaystyle \L \frac{1}{32} \left(\frac{2}{3}u^{\frac{3}{2}} - 2u^{\frac{1}{2}}\right) + C\) \(\displaystyle \L \frac{u^{\frac{1}{2}}}{16} \left(\frac{u}{3} - 1\right) + C\) \(\displaystyle \L \frac{\sqrt{1+4x^2}}{16} \left(\frac{4x^2-2}{3}\right) + C\) \(\displaystyle \L \frac{\sqrt{1+4x^2}}{8} \left(\frac{2x^2-1}{3}\right) + C\) \(\displaystyle \L \frac{\sqrt{1+4x^2}(2x^2-1)}{24} + C\)
\(\displaystyle \L u = 1+4x^2\) \(\displaystyle \L x^2 = \frac{u-1}{4}\) \(\displaystyle \L du = 8x dx\) \(\displaystyle \L \int \frac{x^3}{\sqrt{1+4x^2}}dx =\) \(\displaystyle \L \frac{1}{8} \int x^2 \cdot \frac{8x}{\sqrt{1+4x^2}} dx\) substitute ... \(\displaystyle \L \frac{1}{8} \int \frac{u-1}{4} \cdot \frac{1}{\sqrt{u}} du =\) \(\displaystyle \L \frac{1}{32} \int \sqrt{u} - \frac{1}{\sqrt{u}} du\) \(\displaystyle \L \frac{1}{32} \left(\frac{2}{3}u^{\frac{3}{2}} - 2u^{\frac{1}{2}}\right) + C\) \(\displaystyle \L \frac{u^{\frac{1}{2}}}{16} \left(\frac{u}{3} - 1\right) + C\) \(\displaystyle \L \frac{\sqrt{1+4x^2}}{16} \left(\frac{4x^2-2}{3}\right) + C\) \(\displaystyle \L \frac{\sqrt{1+4x^2}}{8} \left(\frac{2x^2-1}{3}\right) + C\) \(\displaystyle \L \frac{\sqrt{1+4x^2}(2x^2-1)}{24} + C\)