What am I doing wrong?

(2xy2)dx+(y32xy)dy\displaystyle \int{(2x-y^{2})dx+(y^{3}-2xy)dy}

(1,1) to (3,2)

I can't see all your picture, but you have:

x=1+2t,   y=1+t,   0t1\displaystyle x=1+2t, \;\ y=1+t, \;\ 0\leq{t}\leq{1}

[(2xy2)i+(y32xy)j](dxi+dyj)\displaystyle \int\left[(2x-y^{2})i+(y^{3}-2xy)j\right]\cdot(dxi+dyj)

01(t1)(t22t1)dt=34\displaystyle \int_{0}^{1}(t-1)(t^{2}-2t-1)dt=\frac{3}{4}
 
Top