Re: Volume problem
Hello, aswimmer113!
The base of a solid is a circular disk with diameter AB of length 2a.
Find the volume of the solid if each cross section perpendicular to AB is an equilateral triangle.
Is the answer just \(\displaystyle \frac{4\sqrt{3}}{3}a^3\) . . . or am i making it way too easy?
Your answer is correct!
Unless you got it by pure luck, you did a lot of work.
\(\displaystyle \;\;\)I doubt that you made it "way too easy".
Code:
a|
* * * C
* | *
* | : *
* | : *
| :y
* | : *
A *---------+-----+---* B
-a* | : *a
| :y
* | : *
* | : *
* | *
* * * D
-a|
The equation of the circle is: \(\displaystyle \,x^2 + y^2\:=\:a^2\;\;\Rightarrow\;\;y\:=\:\sqrt{a^2\,-\,x^2}\)
The base of the equilateral triangle is: \(\displaystyle \,CD \:= \: 2y\:=\:2\sqrt{a^2\,-\,x^2}\)
The area of an equilateral triangle of side \(\displaystyle s\) is: \(\displaystyle \,A\:=\:\frac{\sqrt{3}}{4}s^2\)
Our triangle has area: \(\displaystyle \,A\;=\;\frac{\sqrt{3}}{4}(2\sqrt{a^2\,-\,x^2})^2\;=\;\frac{\sqrt{3}}{4}\cdot4(a^2\,-\,x^2)\;=\;\sqrt{3}(a^2\,-\,x^2)\)
The volume of the solid is: \(\displaystyle \L\,V\;=\;\int^{\;\;\;a}_{-a}\sqrt{3}(a^2\,-\,x^2)\,dx \;=\;2\,\times\,\sqrt{3}\int^{\;\;\;a}_0(a^2\,-\,x^2)\,dx\)
And we get: \(\displaystyle \L\,V \;= \;2\sqrt{3}\left[a^2x\,-\,\frac{1}{3}x^3\right]^a_0 \;= \;2\sqrt{3}\left[\left(a^3\,-\,\frac{1}{3}a^3\right)\,-\,(0\,-\,0)\right]\)
Therefore: \(\displaystyle \L\,V\;=\;\frac{4\sqrt{3}}{3}a^3\)
Edit: Too fast for me, Galactus!