Volume of a solid

JJ007

New member
Joined
Nov 7, 2009
Messages
27
Find the volume of a solid formed by revolving the region bounded by the graphs of f(x)=2x,x=4\displaystyle f(x)=2\sqrt{x} , x=4, and the x-axis about the y-axis.

That's exactly how it's worded. Can someone point me in the right direction? How to start or which method?
Thanks.
 
Washer method?

Bottom function: fB(x)=0\displaystyle f_B(x) = 0
Top function: \(\displaystyle f_T(x) = 2\sqrt{x}}\)
Distance to axis: r(x)=x\displaystyle r(x)=x

Use the following formula:

2πxaxbr(x)[(fTfB)(x)]dx\displaystyle 2\pi \int_{x_a}^{x_b}r(x) \left [(f_T-f_B)\circ (x) \right ]dx

In this case, we have

\(\displaystyle 2 \pi \int_{x_a = 0}^{x_b = 4} \left r(x)[(f_T-f_B)\circ (x) \right ]dx = 2 \pi \int_{0}^{4}x \left[ 2\sqrt{x}-0\right] dx\)

=4π04x3/2dx\displaystyle = 4 \pi \int_{0}^{4}x^{3/2} dx
 
Shell:\displaystyle Shell:

2π04x(2x)dx = 256π5\displaystyle 2\pi\int_{0}^{4} x(2\sqrt x)dx \ = \ \frac{256\pi}{5}

Disc:\displaystyle Disc:

π04[42(y2/4)2]dy = 256π5\displaystyle \pi \int_{0}^{4}[4^{2}-(y^{2}/4)^{2}]dy \ = \ \frac{256\pi}{5}
 
Ok, I understand the shell method. But I'm little off on the disk part. Here's a similar example I tried with disk:
revolving region bounded by graphs of y=x3,y=1,\displaystyle y=x^3, y=1, and x=2\displaystyle x=2 about the y-axis.
1=x3\displaystyle 1=x^3
x=1\displaystyle x=1
v=π[R(x)]2dx\displaystyle v=\pi \int[R(x)]^2dx
v=π12[x3]2dx=1277π\displaystyle v=\pi \int_1^2[x^3]^2dx = \frac{127}{7}\pi

or
v=π12[x31]2dx\displaystyle v=\pi \int_1^2[x^3-1]^2dx
v=π12[x62x3+1]dx=16314π?\displaystyle v=\pi \int_1^2[x^6-2x^3+1]dx=\frac{163}{14}\pi ?

The real answer is supposed to be 120/7 pi

Thanks guys.
 
JJ007 said:
Ok, I understand the shell method. But I'm little off on the disk part. Here's a similar example I tried with disk:
revolving region bounded by graphs of y=x3,y=1,\displaystyle y=x^3, y=1, and x=2\displaystyle x=2 about the y-axis.
1=x3\displaystyle 1=x^3
x=1\displaystyle x=1
v=π[R(x)]2dx\displaystyle v=\pi \int[R(x)]^2dx
v=π12[x3]2dx=1277π\displaystyle v=\pi \int_1^2[x^3]^2dx = \frac{127}{7}\pi

or
v=π12[x31]2dx\displaystyle v=\pi \int_1^2[x^3-1]^2dx
v=π12[x62x3+1]dx=16314π?\displaystyle v=\pi \int_1^2[x^6-2x^3+1]dx=\frac{163}{14}\pi ?

The real answer is supposed to be 120/7 pi

Thanks guys.

Neither.

R2(x)r2(x)=(x3)212\displaystyle R^2(x)-r^2(x)=(x^3)^2-1^2.

V=π12(x61)dx\displaystyle V=\pi \int_1^2 (x^6-1) dx
 
Note: This is revolving about the YAXIS.\displaystyle Note: \ This \ is \ revolving \ about \ the \ Y-AXIS.

Shell:\displaystyle Shell:

2π12(x31)xdx = 47π5\displaystyle 2\pi\int_{1}^{2}(x^{3}-1)xdx \ = \ \frac{47\pi}{5}

Washer:\displaystyle Washer:

π18(4y2/3)dy = 47π5\displaystyle \pi\int_{1}^{8}(4-y^{2/3})dy \ = \ \frac{47\pi}{5}

See graph below:\displaystyle See \ graph \ below:

[attachment=0:jwq63sta]mno.jpg[/attachment:jwq63sta]

This is revolving about the XAXIS\displaystyle This \ is \ revolving \ about \ the \ X-AXIS

Shell:\displaystyle Shell:

2π18y(2y1/3)dy = 120π7\displaystyle 2\pi\int_{1}^{8}y(2-y^{1/3})dy \ = \ \frac{120\pi}{7}

Washer:\displaystyle Washer:

π12(x61)dx = 120π7\displaystyle \pi\int_{1}^{2}(x^{6}-1)dx \ = \ \frac{120\pi}{7}
 

Attachments

  • mno.jpg
    mno.jpg
    20 KB · Views: 130
Top