Use intergration techniques to find the formula for the volume of a frustrum of a pyramid with square base of side length b and square top with side length of a. the frustrum has height, h.
i cut the pyramid in 4 pieces and if i rotate it against the x-axis then the limits will be from 0 to h. then i foud the slope m=(b-a)/2h. I used the slope to find the line equation y=(b-a/2h)x+(a/2). there fore i suposed that what i have to intergrate is Pi((b-a/2h)x+(a/2))^2.
im stuck since i dont know how to get the intergral of that.
i cut the pyramid in 4 pieces and if i rotate it against the x-axis then the limits will be from 0 to h. then i foud the slope m=(b-a)/2h. I used the slope to find the line equation y=(b-a/2h)x+(a/2). there fore i suposed that what i have to intergrate is Pi((b-a/2h)x+(a/2))^2.
im stuck since i dont know how to get the intergral of that.