aron101782
New member
- Joined
- Jan 18, 2019
- Messages
- 26
problem #21 in stewart 5E calculus
Evaluate:
[MATH]\int\int\int xyz dV[/MATH]where V lies between the spheres [MATH]\rho=2[/MATH] and [MATH]\rho=4[/MATH] and above the cone [MATH]\phi = \frac{\pi}{3}[/MATH][MATH]\int\limits_{0}^{2\pi}\int\limits_{0}^{\frac{\pi}{3}}\int\limits_{2}^{4} \rho^5 \sin^3\phi\cos\phi \cos\theta\sin\theta d\rho d\phi d\theta[/MATH]if somebody could reason with me geomentrically why this evaluates to 0. It seems to me visually to exist.
Evaluate:
[MATH]\int\int\int xyz dV[/MATH]where V lies between the spheres [MATH]\rho=2[/MATH] and [MATH]\rho=4[/MATH] and above the cone [MATH]\phi = \frac{\pi}{3}[/MATH][MATH]\int\limits_{0}^{2\pi}\int\limits_{0}^{\frac{\pi}{3}}\int\limits_{2}^{4} \rho^5 \sin^3\phi\cos\phi \cos\theta\sin\theta d\rho d\phi d\theta[/MATH]if somebody could reason with me geomentrically why this evaluates to 0. It seems to me visually to exist.