vertical motion

jaclyncool7

New member
Joined
Jun 11, 2010
Messages
3
a stone is thrown veritcally has height = 160t-16t^2+14 feet t second after it is thrown. what is the maximum height the stone achieves?
 
The max height is the vertex of the parabola h=at2+bt+c\displaystyle h=at^{2}+bt+c

The max height can be found by using h=cb24a\displaystyle h=c-\frac{b^{2}}{4a}


Oops, fixed typos
 
S(t) = 16t2+160t+14, distance formula.\displaystyle S(t) \ = \ -16t^2+160t+14, \ distance \ formula.

V(t) = 32t +160, velocity formula, now when the velocity = 0, it has taken 5 seconds.\displaystyle V(t) \ = \ -32t \ +160, \ velocity \ formula, \ now \ when \ the \ velocity \ = \ 0, \ it \ has \ taken \ 5 \ seconds.

Hence, S(5) = 414 ft., the maximum height f(t) can achieve.\displaystyle Hence, \ S(5) \ = \ 414 \ ft., \ the \ maximum \ height \ f(t) \ can \ achieve.

See graph.\displaystyle See \ graph.

[attachment=0:1h21hmg8]bbb.jpg[/attachment:1h21hmg8]
 

Attachments

  • bbb.jpg
    bbb.jpg
    20 KB · Views: 62
Top