Gijoefan1975
New member
- Joined
- Apr 11, 2017
- Messages
- 12
Put the following functions into vertex form by completing the square, and then graph them based on transformations (as you did on HW 12).
. . .\(\displaystyle a)\mbox{ }\, f(x)\, =\, x^2\, +\, 6x\, +\, 9\)
. . .\(\displaystyle b)\mbox{ }\, y\, =\, x^2\, -\, 8x\, +\, 16\)
. . .\(\displaystyle c)\mbox{ }\, y\, =\, x^2\, +\, 6x\, +\,5\)
. . .\(\displaystyle d)\mbox{ }\, y\, =\, x^2\, -\, 10x\, -\, 10\)
. . .\(\displaystyle e)\mbox{ }\, y\, =\, x^2\, +\, 2x\, +\, 8\)
. . .\(\displaystyle f)\mbox{ }\, y\, =\, 2x^2\, +\, 4x\, +\, 1\)
. . .\(\displaystyle g)\mbox{ }\, y\, =\, -x^2\, +\, x\, +\, 4\)
. . .\(\displaystyle h)\mbox{ }\, g(x)\, =\, 2\, -\, x^2\, +\, x\)
Would it be okay to see these as set to zero?
. . .\(\displaystyle a)\mbox{ }\, f(x)\, =\, x^2\, +\, 6x\, +\, 9\)
. . .\(\displaystyle b)\mbox{ }\, y\, =\, x^2\, -\, 8x\, +\, 16\)
. . .\(\displaystyle c)\mbox{ }\, y\, =\, x^2\, +\, 6x\, +\,5\)
. . .\(\displaystyle d)\mbox{ }\, y\, =\, x^2\, -\, 10x\, -\, 10\)
. . .\(\displaystyle e)\mbox{ }\, y\, =\, x^2\, +\, 2x\, +\, 8\)
. . .\(\displaystyle f)\mbox{ }\, y\, =\, 2x^2\, +\, 4x\, +\, 1\)
. . .\(\displaystyle g)\mbox{ }\, y\, =\, -x^2\, +\, x\, +\, 4\)
. . .\(\displaystyle h)\mbox{ }\, g(x)\, =\, 2\, -\, x^2\, +\, x\)
Would it be okay to see these as set to zero?
Attachments
Last edited by a moderator: